• Title/Summary/Keyword: 스마트 학습

Search Result 1,243, Processing Time 0.033 seconds

Safety Class Design with Bitbricks (비트브릭을 활용한 안전 수업 설계)

  • Park, Minyoung;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.303-308
    • /
    • 2021
  • In this study, we intended to present a class design plan that combines safety education and software education, which are very important in the school field, but are considered necessary for change. In order to realize safety education centered on indirect experience, the 12th class plan was devised as a "Smart Safety Commuter Road Production Project" using a physical computing tool called Bitbrick. Based on the 12th city's class plan, qualitative research was conducted with interviews with a total of five teachers, showing both the effectiveness and problems of applying them to the class. The effectiveness is that unlike conventional delivery-type safety education, indirect experience-oriented safety education centered on real-life situations is possible, and it can be expected that procedural thinking skills can be developed along with stimulating interest. However, the problem has been shown that the process of implementing the direct situation can be challenging and that even activities can be more efficient than group activities.

  • PDF

A Study on the Implementation of Real-Time Marine Deposited Waste Detection AI System and Performance Improvement Method by Data Screening and Class Segmentation (데이터 선별 및 클래스 세분화를 적용한 실시간 해양 침적 쓰레기 감지 AI 시스템 구현과 성능 개선 방법 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyun-seo;Choi, Donggyu;Jang, Jongwook;Kim, Minyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.571-580
    • /
    • 2022
  • Marine deposited waste is a major cause of problems such as a lot of damage and an increase in the estimated amount of garbage due to abandoned fishing grounds caused by ghost fishing. In this paper, we implement a real-time marine deposited waste detection artificial intelligence system to understand the actual conditions of waste fishing gear usage, distribution, loss, and recovery, and study methods for performance improvement. The system was implemented using the yolov5 model, which is an excellent performance model for real-time object detection, and the 'data screening process' and 'class segmentation' method of learning data were applied as performance improvement methods. In conclusion, the object detection results of datasets that do screen unnecessary data or do not subdivide similar items according to characteristics and uses are better than the object recognition results of unscreened datasets and datasets in which classes are subdivided.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF

Effective Speaker Recognition Technology Using Noise (잡음을 활용한 효과적인 화자 인식 기술)

  • Ko, Suwan;Kang, Minji;Bang, Sehee;Jung, Wontae;Lee, Kyungroul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.259-262
    • /
    • 2022
  • 정보화 시대 스마트폰이 대중화되고 실시간 인터넷 사용이 가능해짐에 따라, 본인을 식별하기 위한 사용자 인증이 필수적으로 요구된다. 대표적인 사용자 인증 기술로는 아이디와 비밀번호를 이용한 비밀번호 인증이 있지만, 키보드로부터 입력받는 이러한 인증 정보는 시각 장애인이나 손 사용이 불편한 사람, 고령층과 같은 사람들이 많은 서비스로부터 요구되는 아이디와 비밀번호를 기억하고 입력하기에는 불편함이 따를 뿐만 아니라, 키로거와 같은 공격에 노출되는 문제점이 존재한다. 이러한 문제점을 해결하기 위하여, 자신의 신체의 특징을 활용하는 생체 인증이 대두되고 있으며, 그중 목소리로 사용자를 인증한다면, 효과적으로 비밀번호 인증의 한계점을 극복할 수 있다. 이러한 화자 인식 기술은 KT의 기가 지니와 같은 음성 인식 기술에서 활용되고 있지만, 목소리는 위조 및 변조가 비교적 쉽기에 지문이나 홍채 등을 활용하는 인증 방식보다 정확도가 낮고 음성 인식 오류 또한 높다는 한계점이 존재한다. 상기 목소리를 활용한 사용자 인증 기술인 화자 인식 기술을 활용하기 위하여, 사용자 목소리를 학습시켰으며, 목소리의 주파수를 추출하는 MFCC 알고리즘을 이용해 테스트 목소리와 정확도를 측정하였다. 그리고 악의적인 공격자가 사용자 목소리를 흉내 내는 경우나 사용자 목소리를 마이크로 녹음하는 등의 방법으로 획득하였을 경우에는 높은 확률로 인증의 우회가 가능한 것을 검증하였다. 이에 따라, 더욱 효과적으로 화자 인식의 정확도를 향상시키기 위하여, 본 논문에서는 목소리에 잡음을 섞는 방법으로 화자를 인식하는 방안을 제안한다. 제안하는 방안은 잡음이 정확도에 매우 민감하게 반영되기 때문에, 기존의 인증 우회 방법을 무력화하고, 더욱 효과적으로 목소리를 활용한 화자 인식 기술을 제공할 것으로 사료된다.

  • PDF

Analysis of Effects of Small School Space Innovation (소규모 학교공간혁신 효과성 분석)

  • Kwon, Soon-Chul;Lee, Yong-Hwan
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • The downsizing of schools is accelerating due to a rapid decline in the school-age population, and as the crisis over regional and school disappearance increases, the need for smaller schools to respond to future educational needs is increasing. Through flexible curricula and digital/artificial intelligence-based classroom teaching improvements, students' satisfaction with school life, student creativity and character development, improved academic achievement, and strengthened cooperative communication capabilities will be observed, and teachers' teaching and learning methods will change. Educational effects such as these are important, and transforming school facilities into future-oriented spaces, including school space innovation, is required to accomplish them. This study examined the future of education systems in small schools, focusing on analyzing the educational effects and awareness of the sustainability of spatial innovation, in terms of school space changes, school education correlation, and smart environment, to develop innovation projects in small schools. A desirable direction for implementation is presented.

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.43-52
    • /
    • 2023
  • Rubber produced by rubber companies is subjected to quality suitability inspection through rheometer test, followed by secondary processing for automobile parts. However, rheometer test is being conducted by humans and has the disadvantage of being very dependent on experts. In order to solve this problem, this paper proposes a deep learning-based rheometer quality inspection system. The proposed system combines LSTM(Long Short-Term Memory) and CNN(Convolutional Neural Network) to take advantage of temporal and spatial characteristics from the rheometer. Next, combination materials of each rubber was used as an auxiliary input to enable quality conformity inspection of various rubber products in one model. The proposed method examined its performance with 30,000 validation datasets. As a result, an F1-score of 0.9940 was achieved on average, and its excellence was proved.

Task offloading scheme based on the DRL of Connected Home using MEC (MEC를 활용한 커넥티드 홈의 DRL 기반 태스크 오프로딩 기법)

  • Ducsun Lim;Kyu-Seek Sohn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.61-67
    • /
    • 2023
  • The rise of 5G and the proliferation of smart devices have underscored the significance of multi-access edge computing (MEC). Amidst this trend, interest in effectively processing computation-intensive and latency-sensitive applications has increased. This study investigated a novel task offloading strategy considering the probabilistic MEC environment to address these challenges. Initially, we considered the frequency of dynamic task requests and the unstable conditions of wireless channels to propose a method for minimizing vehicle power consumption and latency. Subsequently, our research delved into a deep reinforcement learning (DRL) based offloading technique, offering a way to achieve equilibrium between local computation and offloading transmission power. We analyzed the power consumption and queuing latency of vehicles using the deep deterministic policy gradient (DDPG) and deep Q-network (DQN) techniques. Finally, we derived and validated the optimal performance enhancement strategy in a vehicle based MEC environment.

Two-way Interactive Algorithms Based on Speech and Motion Recognition with Generative AI Technology (생성형 AI 기술을 적용한 음성 및 모션 인식 기반 양방향 대화형 알고리즘)

  • Dae-Sung Jang;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.397-402
    • /
    • 2024
  • Speech recognition and motion recognition technologies are applied and used in various smart devices, but they are composed of simple command recognition forms and are used as simple functions. Apart from simple functions for recognition data, professional command execution capabilities are required based on data learned in various fields. Research is being conducted on a system platform that provides optimal data to users using Generative AI, which is currently competing around the world, and can interact through voice recognition and motion recognition. The main technical processes designed for this study were designed using technologies such as voice and motion recognition functions, application of AI technology, and two-way communication. In this paper, two-way communication between a device and a user can be achieved by various input methods through voice recognition and motion recognition technology applied with AI technology.

Detection Model of Fruit Epidermal Defects Using YOLOv3: A Case of Peach (YOLOv3을 이용한 과일표피 불량검출 모델: 복숭아 사례)

  • Hee Jun Lee;Won Seok Lee;In Hyeok Choi;Choong Kwon Lee
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • In the operation of farms, it is very important to evaluate the quality of harvested crops and to classify defective products. However, farmers have difficulty coping with the cost and time required for quality assessment due to insufficient capital and manpower. This study thus aims to detect defects by analyzing the epidermis of fruit using deep learning algorithm. We developed a model that can analyze the epidermis by applying YOLOv3 algorithm based on Region Convolutional Neural Network to video images of peach. A total of four classes were selected and trained. Through 97,600 epochs, a high performance detection model was obtained. The crop failure detection model proposed in this study can be used to automate the process of data collection, quality evaluation through analyzed data, and defect detection. In particular, we have developed an analytical model for peach, which is the most vulnerable to external wounds among crops, so it is expected to be applicable to other crops in farming.

Case analysis study on classes using Digital Contents for students with Physical Disabilities (지체장애학생을 위한 디지털 콘텐츠 활용 수업 사례분석 연구)

  • Janghyun Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2024
  • As various digital educational contents for students with disabilities are spreading, a teaching support system for smart education and a utilization plan that takes into account the characteristics of each type of disability must be established. Accordingly, this study analyzed classes using digital content focusing on the case of a special school for the physically disabled and proposed ways to apply the teaching and learning content to the field and improve the support system. Class cases at a special school in Seoul were purposively sampled and analyzed using class video data, class reflection sheets, and in-depth interviews with teachers. Based on the case analysis results, a plan was presented to effectively utilize digital content in special education settings by reflecting the characteristics of students with physical disabilities. A follow-up study was proposed based on the results of this study.