• Title/Summary/Keyword: 스마트 포토닉 의류

Search Result 10, Processing Time 0.029 seconds

A Study on Light source Color For Photonic Clothing (포토닉 의류를 위한 광원 색채 연구)

  • Kim, Nam-Hui;Chae, Ji-Won;Park, Su-Jin;Lee, Yeong-Jin;Lee, Ju-Hyeon;Kim, Min-Gu;Kim, Yong-Jun;Jo, Un-Jeong
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.135-138
    • /
    • 2009
  • 포토닉 의류는 의류에 다양한 광원과 광전달 소재를 적용하여 빛을 발현하는 디지털 기술을 적용하여 의류의 색채를 제어함으로써 착용자의 감성을 시각화할 수 있도록 하는 스마트 의류의 일종이다. 앞서 개발한 포토닉 의류의 중 LED램프와 광섬유의 조합으로 색광을 발현하는 기능은 특별히 RGB 색조합을 통해 의도하는 색채를 다양하게 구현할 수 있다는 특징이 있다. 현재 색채 발현 방법은 Red, Green, Blue의 3가지 색상의 LED의 적절한 조합을 통하여 색채를 발현하는 방식을 가지고 있으나 색체계 상의 기준 색상과 실제 발현되어 육안으로 확인되는 색채의 차이가 있어 의도와는 다른 색채가 나타나 디자이너의 색채 기획의도를 포토닉 의류에 적용하기 힘들며, 기존의 색체계에 의해 생산된 다른 텍스타일 색채와의 컬러 조합에 있어서 필요한 정확한 데이터를 얻기 어렵다. 따라서, 포토닉 의류에 의도하는 색채를 발현하기 위해서는 기존 색상과의 차이점 보정과 효과적인 데이터 베이스 구축이 필요하다. 본 연구에서는 포토닉 의류의 색채에 관한 보다 체계적인 연구를 통해 웹 컬러와 광섬유를 이용한 포토닉 컬러에서의 색채 이미지를 비교, 분석하고 RGB값과 색차값을 통한 차이점 보정을 참고하여 광섬유를 사용하여 제작되는 스마트 포토닉 의류의 제작 시 색채선정 기획에 있어서 기초적인 자료로 활용될 수 있도록 제시하고자 한다.

  • PDF

A study on the modular design of smart photonic sports clothing based on optical fiber technology (광섬유 기반 스마트 포토닉 스포츠 의류의 모듈화 디자인 연구)

  • Park, Soo-Jin;Park, Sun-Hyeong;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.393-402
    • /
    • 2009
  • The objectives of this study is to search for systematic modular design methods for smart photonic sports clothing based on light emitting optical fiber technology related to smart photonic clothing, and to present a variety of modular design models based on optical fiber and light emitting module assembly technology, both of which stand on the basis of body measurements. To achieve the objectives, this paper firstly reviewed the concept of smart photonic clothing and related technologies, and an examination of the concepts of modularization and its designs, as well as examples of modularization used in various fields. To decide the size and attachment point of optical fiber and light emitting modules, the study considered the close connection between modularization and body measurements. Along with body measurements, to derive the most suitable region to attach the optical fiber and light emitting modules, appropriate attachment locations for computing devices and regions which are marginally affected by body movements, were analyzed. On the basis of the results, a modular model of a sports jacket with smart photonic functions was designed and presented, with the focus on the wearer's safety and protection function, which was judged to be the most needed and appropriate function among the three functions of smart photonic clothing related to sports clothing. The results of this study is expected to be useful as basic data for future smart photonic clothing design research.

  • PDF

A Study of Emotion evoked by colors and changes of color - Focused on the smart wear (스마트 의류에서의 색과 색 변화에 따른 정서)

  • Cho, Woon-Jung;Hyun, Ju-Ha;Kim, Soo-Hyun;Eom, Ki-Min;Han, Kwang-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1166-1170
    • /
    • 2009
  • Colors convey emotions and feelings. This study investigated human's emotional responses on both single colors and changes of colors in clothing. From experiment 1, we found that the important possibility that color emotion also can apply on photonic clothing and it can play a significant role in expressing emotions. We also found there are differences in emotional dimensions between web colors and photonic colors.

  • PDF

Designing User Participation Smart Photonic Clothing Prototype Using Arduino (아두이노를 활용한 사용자 참여형 스마트 포토닉 의류 프로토타입 설계)

  • An, Mi-hwa;Lim, Ho-sun
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • Smart photonic clothing integrates light emitting technology inside and outside of the garment and integrates it as a fashion product. It expresses digital color that radiates light outside the body that expands the functionality of the clothing as well as makes new and various attempts visually. It is also is gradually expanding into a new area of fashion. LED, one of the digital color output devices, is a light emitting device that is suitable for presenting consumer customized designs in that the patterns and colors of clothes can be modified as desired by utilizing computer technology such as program coding. LED technology that can realize various digital colors is actively applied in various industrial design fields, but there are few previous studies on smart clothes using LED color in Korean fashion fields. Therefore, this study develops a prototype of a customized LED smart photonic garment that allows the user to directly participate in the color implementation of clothing and select a digital color suitable for the desired function. The LED module was designed to be detachable from clothing and made using a 256-pixel LED matrix. Various coding patterns of the LED were designed using the coding change of Arduino program.

Luminescence effects of POF-based Flexible Textile by post-treated Optic illuminate (측광 후처리 가공에 의한 유연 광직물의 발광 효과)

  • Yang, Eun-Kyung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2011
  • The plastic optical fiber has been previously known to have the limits in fabrication and care, due to its lack of flexibility and durability. Recently, an innovative technology of 'water-resistant & flexible optical fiber', in which the surface of etched POF(i.e., plastic optical fiber) is to be coated with a type of synthetic resin, has been developed. In this study, the post-treated POF-based flexible textiles were evaluated in terms of luminance, physical visibility and perceived visibility, according to the fabric lengths and colors of the light source. The POF-based flexible textile with 10cm fabric length and green light source appeared to show relatively higher illuminating effects. The maximum distance for perceived visibility of the POF-based flexible textiles was found to be 100m. Therefore, the results of this study are expected to be utilized as a fundamental for the further studies to develop the digital color clothing with application of POF-based flexible textile.

  • PDF

A Suggestion of Guideline for designing of logo type for Apparel products based on the technology of flexible plastic optical fiber (유연 광섬유 기술을 적용한 의류 제품용 로고 디자인 방향의 제시)

  • Kim, Nam-Hee;Yang, Jin-Hee;Hong, Soon-Kyo;Hong, Suk-Il;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.469-476
    • /
    • 2012
  • The purpose of this study is to derive design guideline for logo design development of smart clothing using flexible plastic optical fiber. In a criterion of guideline derivation for logo design, the first, it is a question of whether it indicates an appropriate degree of brightness across the front of flexible plastic optical fiber. The second, it is a question of whether it indicates relatively an uniform brightness characteristic across the front of flexible plastic optical fiber. For this, the brightness characteristic of flexible plastic optical fiber according to the angle changes and the length of flexible plastic optical fiber was analyzed by the 'Experiment 1'. To deduce guideline for the logo design of the actual garment, the brightness characteristic of flexible plastic optical fiber about the main morpheme of the capital letter of alphabet was analyzed by the 'Experiment 2'. Based on the results of the two experiment, this study derived design guideline and limitations for logo design of smart clothing visualized by the flexible plastic optical fiber.

  • PDF

A Study on the Logo Design for Clothing in Application of the Flexible Optical Fiber with Three-Colors of LED Light Source (3색 LED와 유연 광섬유를 적용한 의류용 로고 디자인 연구)

  • Shin, Hye Young;Lee, Joo-Hyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.4
    • /
    • pp.482-490
    • /
    • 2013
  • This study suggests a suitable logo design application of a three colors LED light source and flexible plastic optical fiber (POF). In this study, characteristic relevant brightness of (according to the embodiment conditions of the flexible POF for logo design) for smart clothing were analyzed through two experiments. The suitable conditions of the logo design for three colors of light source were observed in 'Experiment 1'. The angle of $80^{\circ}$ to $100^{\circ}$ and the length of 8cm to 16cm appeared a more suitable condition for green-colored and red-colored light sources. The angle of $80^{\circ}$ to $100^{\circ}$ at a length of 8cm to 12cm appeared a more suitable condition for a blue-colored light source. In 'Experiment 2', a 'Klavika' in small letter was selected as suitable logo design for the application POF. The alphabet was separated by a morpheme, which is the minimal linguistic unit. All alphabets were classified into sixteen morphemes. The luminance of fourteen morphemes (realized by the embroidery method) were measured and analyzed. Subsequently, eight morphemes appeared to show a relatively equal luminance of $3-4cd/m^2$ in a green-colored light source, $2-3cd/m^2$ in red-colored light source, and $2cd/m^2$ in a blue-colored light source. Four of the fourteen morphemes, showed a 20% brighter level of luminance compared to the eight morphemes above, the cast of combination of green or red light source. This result indicates that a flexible POF with 20% less luminance are believed more suitable for four morphemes combined with a green or red light source. The results of this study provide fundamental data for further approaches to clothing logo design for the application of a flexible POF.

An Exploratory Study on Luminescent Properties and the Relevant Applications of POF-based Flexible Textile Display for Mountaineer Wear with Safe-guard Function (안전보호 기능의 산악복을 위한 유연 광섬유 직물 디스플레이의 발광특성 및 적용에 관한 탐색적 연구)

  • Kim, Jin-Sun;Park, Soo-Jin;Kim, Yu-Ji;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2011
  • Recent years have witnessed that IT-convergence technology has become the most important issue in the global market. Along with this trend, demand for PSS(i.e., Product-Service Systems) design has been rapidly increased in the smart clothing market. A case of the PSS design research, this study aimed to identify optimum conditions for weaving of POF-based flexible textile display(abbreviated as "PFTD") for mountaineer wear with safe-guard function regarding luminescent properties. Based on the findings regarding the optimum weaving condition of PFTD, several designs of mountaineer wear were suggested in this study. A total of 15 PFTD samples were prepared under various weaving conditions of weave structures and density of POF, and the luminance values of each sample were measured. As the results, the types of PFTD with structures and density of 'satin 3:1', 'satin 2:1', 'twill 3:1' and 'twill 2:1' indicated relatively higher luminescence. And based on the results and recent sports fashion trends, two suited mountaineering wears applying PFTD were illustrated in this study.

  • PDF

A study of Luminescence effects of POF-woven Fabric Display by Method of Weaving (직물화 방식에 따른 유연 광섬유 직물 디스플레이의 광원 색채별 발광효과에 관한 연구)

  • Yang, Jin-Hee;Park, Sun-Hyung;Cho, Hyun-Seung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.4
    • /
    • pp.517-526
    • /
    • 2013
  • This paper reports on flexible plastic optical fiber (POF) fabric displays which are used to develop light-emitting clothing from photonic fabric. We first evaluated the luminescence value corresponding to different methods of processing flexible optical fibers, types of reflective fabric structure, and colors of the light. Moreover, we tried to identify the optimum conditions of the flexible POF fabric displays to realize high luminescence value. The processing methods that were compared were the "Pre-etching" method and the "Post-etching" method. On the basis of the reflective structure of the fabric, the fabrics were categorized as the "White fabric" and the "Reflective fabric." Analysis results showed that the effect of the processing method is more dominant than that of the types of reflective fabric structure. Further, the capability of the Post-etching method to increase luminescence value is slightly higher than that of the Pre-etching method. Further, the 'Reflective fabric' is slightly more efficacious as the base fabric to increase the luminescence value, than the White fabric is. Thus, optimum increase in luminance can be realized by employing the Post-etching method and the Reflective fabric as the base fabric.