• Title/Summary/Keyword: 스마트 패션

Search Result 112, Processing Time 0.023 seconds

Developing a Multi-Functional Smart Down Jacket Utilizing Solar Light and Evaluating the Thermal Properties of the Prototype (태양광을 활용한 스마트 다운재킷 개발 및 보온성능 평가)

  • Yi, Kyonghwa;Kim, Keumwha
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.92-108
    • /
    • 2015
  • This study aimed at developing a down jacket prototype that utilized sunlight as an alternative energy source with no air pollution. The jacket is filled with flexible solar panels and has a heat-generating function and LED function. In this study, three smart down jacket prototypes were developed, and the jacket's capabilities were demonstrated through the thermal effect on the performance test. The typical output voltage of the flexible solar panels was 6.4V. By connecting the 2 solar cell modules in series, the final output voltage was 12.8V. A battery charge regulator module was used the KA 7809 (TO-220) of 9V. Three heating pads were to be inserted into the belly of the jacket as direct thermal heating elements, and the LED module was configured, separated by a flash and an indicator. The smart down jacket was designed to prevent damage to the down pack without the individual devices' interfering with the human body's motion. Because this study provides insulation from extreme cold with a purpose, the jacket was tested for heat insulation properties of non-heating, heating on the back, heating on the abdomen, and heating on both the back and abdomen in a sitting posture in a static state. Thermal property analysis results from examining the average skin temperature, core temperature, and the temperature and humidity within clothing showed, that placing a heating element in one place was more effective than distributing the heating elements in different locations. Heating on the back was the most effective for maintaining optimal skin temperature, core temperature, and humidity, whereas heating on the abdomen was not effective for maintaining optimal skin temperature, core temperature, or humidity within clothing because of the gap between the jacket and the body.

Development of Smart Soccer Socks Using a Textile Stretch Sensor -Focused on Middle School Girls between the Ages of 14 and 15- (텍스타일형 스트레치 센서를 이용한 스마트 축구 양말 개발 -14~15세 여중생을 중심으로-)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.17-29
    • /
    • 2020
  • This study aimed to produce fiber stretch sensors for smart soccer socks to prevent injuries during training. A sensor was manufactured with stretchable fabric and tested to ensure convenience during training. In order to manufacture the fiber stretch sensor, a CNT dispersion solution was applied to an e-band and elastic polyester fabric, and the performance of the sensors was evaluated by a tensile test. Performance evaluation showed that both of the tested fabrics are excellent for this purpose. Both sensors were attached to socks to create prototype wearable devices, and an experiment was conducted to determine whether a resistance change accompanying relaxation and contraction of the gastrocnemius muscle could be detected. In order to accurately evaluate performance as a sensor, the fabric was stretched 20 times at low speeds of 1 Hz and 0.5 Hz. A change in resistance due to tension was observed, with both the E-band and the stretchable poly fabric showing high sensitivity and high reproducibility. Both can be used as relaxation/contraction sensors. Smart soccer socks were made using the two materials, and an evaluation was conducted. Tensile tests were done on the smart soccer socks; the tests were done 20 times per sock, and the sensor showed a stable resistance change between 30 and 40 ohms depending on the tension of the sensor. As a result, we confirmed that smart soccer socks with stretch sensors made of E-bands can measure changes in the gastrocnemius muscle.

Research on Intention to Adopt Smart Wear: Based on Extended UTAUT Model (스마트웨어 수용의도 연구: 확장된 UTAUT 모형을 중심으로)

  • Sung, Heewon;Sung, Junghwan
    • Journal of Fashion Business
    • /
    • v.19 no.2
    • /
    • pp.69-84
    • /
    • 2015
  • The objective of this study is to investigate the intention to adopt smart wear, based on extended UTAUT model. We examined the effects of performance expectancy (PE), effort expectancy (EE), hedonic motivation (HE), social influence (SI), facilitating conditions (FC), and price value (PV) on the intended adoption of smart watch and smart shoes, respectively. In addition, moderating effects of gender, age, and innovation resistance were examined. An online survey was conducted, comprised of 2030 consumers who were aware of smart watch or smart shoes. In total, 393 responses were analyzed. About 50.4% were male, and 44.8% were in their 20's. An exploratory factor analysis generated five factors - PE & HM, EE, SI, FC, and PV- which were employed as independent variables in the multiple regression models. PE & HM, PV, and SI influenced on the intention to use both smart devices. FC showed the significant effect only on the intention to adopt the smart watch. In terms of gender differences, SI and PV were the important predictors of the intention to adopt the smart watch in the female group only. With respect to age difference, SI was very effective in explaining the intention of individuals in their 30's to adopt smart wear. Among the low innovation resistance group, SI was significant predictor, while PE & HE and PV were significant among the high resistance group. The findings provide useful information about the possibility of the adoption of smart wear, and new insight into market segmentation.

A Study for Development Status of Functional Bedding -Focusing on Smart Bedding Based on Internet of Things- (국내외 기능성 침구 개발 현황에 관한 연구 -IoT(Internet of Things) 기술기반 스마트 침구를 중심으로-)

  • Yoon, Subin;Kim, Seongdal
    • Journal of Fashion Business
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 2019
  • Various types of functional bedding for inducing and maintaining sleep, are developed and launched with the importance of improving health through sleep emphasized currently. The purpose of this study is to examine development status and direction of functional bedding in the $4^{th}$ Industrial Revolution era, through systematic classification of elements of IoT-based smart bedding cases actively developed as functional bedding at home and abroad. Through previous research, literature and Internet data, characteristics and functional extension of smart bedding and the background of smart bed development was analyzed. And it was analyzed that smart bedding pursues recent functionalism and convergence of physical and digital concept such as IoT or AI, and also mental value to improve sleep quality. As bedroom where smart bedding place in has the private and limited characteristics and users are in sleep-conscious, that hard to ensure power and discomfort in carrying are moderated and the aesthetic elements are not very important, and that the smart bedding performance while sleeping were affected on developmental background. Based on CES case study and analysis on how smart beds are functionally expanded from conventional bedding, smart beds have gained information through digital sensing, and common properties that can be controlled anytime, anywhere, using a smart phone. Some set up the right environment and pose, while others stimulate nerves directly as active intervention. It is expected that smart bedding will be developed to cure user's body and mind, through active intervention when sleeping.

Development of Smart Tote Bags with Marquage Techniques Using Optical Fiber and LEDs (광섬유와 LED를 활용한 마카쥬(marquage) 기법의 스마트 토트백 개발)

  • Park, Jinhee;Kim, Sang Jin;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • The purpose of this study was to develop smart bags that combining fashion-specific trends and smart information technologies such as light-emitting diodes(LED) and optic fibers by grafting marquage techniques that have recently become popular as part of eco-fashion. We applied e-textiles by designing leather tote bags that could show off LED luminescence. A total of two tote bags, a white-colored peacock design and a black-colored paisley design, divided the LED's light-emitting method into two types, incremental lighting and random light-emission to suit each design, and the locations of the optical fibers were also reversed depending upon the design. The production of circuits for the LEDs and optical fibers was based on the design, and a flexible conductive fabric was laser-cut instead of wire line and attached to the circuit-line location. A separate connector was underwent three-dimensional(3D)-modeling and was connected to high-luminosity LEDs and optic fiber bundles. The optical fiber logo part expressed a subtle image using a white-colored LED, which did not offset the LED's sharp luminous effects, suggesting that using LEDs with fiber optics allowed for the expression of each in harmony without being heterogeneous. Overall, the LEDs and fiber optic fabric were well-harmonized in the fashion bag using marquage techniques, and there was no sense of it being a mechanical device. Also, the circuit part was made of conductive fabric, which is an e-textile product that feels the same as a thin, flexible fabric. The study confirmed that the bag was developed as a smart wearable product that could be used in everyday life.

EMS socks for Preventing Ankle Injuries during Home Training -Focusing on Men in Their Late 20s- (홈트레이닝 시 발목 부상 예방을 위한 EMS 양말 효과 - 20대 후반 남성을 중심으로 -)

  • Song, Kwanwoo;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.26 no.4
    • /
    • pp.112-122
    • /
    • 2022
  • The purpose of this study is to investigate the effect of using socks combined with EMS on ankle pain reduction and ankle function improvement in home training participants. In this study, the conductive fabric was combined using socks that can properly compress the ankle. First, VAS was measured during EMS training after fatigue was induced and compared with fatigue during rest. It was confirmed that the level of VAS after EMS training was lower than after rest and fatigue. It was also confirmed that EMS training, which combines EMS with socks, was effective in reducing pain. The experimental action is a measurement action of WBLT and lying posture, and the situation before and after EMS training was compared by performing 30 minutes on the treadmill to cause delayed muscle pain during exercise. As a result of this study, it was found that pain reduction and ROM function were improved when electrical stimulation was performed using EMS socks. It was also confirmed that the application of electrical stimulation to EMS socks effected on ankle fatigue and function improvement. From the study results, it is expected that wearing socks equipped with EMS significantly reduces ankle injuries and improves functional recovery for home training participants.

Using a Stretch Sensor About of Squat Ankle Range of Motion Check Socks -Focusing on Men in Their Late 20s- (스트레치 센서를 이용한 스쿼트 시 발목 가동범위 체크 센서 양말에 관하여 -20대 후반 남성을 중심으로-)

  • Song, Kwanwoo;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.26 no.2
    • /
    • pp.129-142
    • /
    • 2022
  • The purpose of this study is to develop socks to check the range of ankle movement during squats for men in their late 20s. Sensors of 6, 8, and 12 mm were selected, and each sample was impregnated 1 to 3 times. It was prepared using a CNT dispersion, and the GF value was measured using UTM. Among them, the sample with 2 impregnation showed the best GF value. As a result of applying each sample to the socks, the 12 mm sensor was wider than the area of the Achilles tendon, resulting in noise, and the 8 mm sensor was higher than the tensile strength of the socks, resulting in a decrease in the graph. Therefore, testing was performed using a 6 mm sensor. In order to determine the effectiveness of the sensor, the normal operating range was checked through squats, and significant changes were confirmed when the operating range was checked again through squats by performing operations that can increase the operating range through Gastrocnemius, Soleus stretching, and low lunge. Using the results of this study, it is expected that the average value of the ankle movement range of the user is checked prevent injury, to be provided as basic data for the production of shoe products and the promotion of physical health.

A Study on EMS Protective Gear Design and Its Effects for Elite Badminton Players with Knee Pain (무릎 통증이 있는 엘리트 배드민턴 선수를 위한 건식 E-textile 전극의 EMS(Electirc muscle stimulation) 보호대 설계 및 효과)

  • JuIl Lee;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.93-107
    • /
    • 2023
  • This study aimed to design a knee brace with dry electrode EMS (Electrical Muscle Stimulation) for elite badminton players suffering from knee pain and assess its effectiveness in relieving pain and improving mobility. The assessment measured knee joint range of motion (ROM), Sargent jump height, and pain perception using a visual analog scale (VAS). Four experimental groups were established: stability, pain induction after 100 squats, muscle soreness induction with a regular knee brace, and muscle soreness induction with the EMS knee brace. The most suitable knee brace was selected from four samples to design the EMS knee brace. The conductive fabric was integrated into the inner surface of the knee brace to enhance EMS conductivity for the quadriceps muscles. Tensile strength tests showed that the dry electrode did not significantly affect the physical functionality of the knee brace.Regarding knee joint ROM and Sargent jump height, the EMS knee brace outperformed muscle soreness induction with a regular knee brace and wearing a standard knee brace. VAS measurements demonstrated that the EMS braces effectively alleviated pain perception in most cases. The results indicate the potential for developing EMS braces to alleviate pain and prevent injuries for athletes across various sports.

A Study on the Application Trends of Next-Generation Solar Cells and the Future Prospects of Smart Textile Hybrid Energy Harvesting Devices : Focusing on Convergence with Industrial Materials (차세대 태양전지의 활용 동향 및 스마트 텍스타일 하이브리드 에너지 하베스팅 소자의 미래전망에 관한 연구 : 산업 소재와의 융합 중심)

  • Park, Boong-Ik
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.151-158
    • /
    • 2021
  • In this paper, we analyzed the latest research trends, challenges, and potential applications of next-generation solar cell materials in various industrial fields. In addition, future prospects and possibilities of Smart Textile Hybrid Energy Harvesting Devices that will supply electricity by combining with wearable IoT devices are presented. The hybrid textile energy harvesting device fused next-generation solar cells with tribo-piezoelectric devices will develop into new 'Convergence Integrated Smart Wear' by combining the material itself with wearable IoT devices in the era of the 4th industrial revolution. The next-generation nanotechnology and devices proposed in this paper will be applied to the field of smart textile with an energy harvesting function. And we hope it will be a paradigm shift that evolves into creative products which provide AI services such as medical & healthcare by convergence with the future smart wear industry.

Research on Heart Rate Sensing Clothing Design for Seniors Based on Universal Fashion (유니버설 패션에 기반한 시니어 심박측정 의류 디자인 연구)

  • Koo, Hye Ran;Jeon, Dong Jin;Lee, Joo Hyeon
    • The Korean Fashion and Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.692-700
    • /
    • 2017
  • The number of elderly citizens has risen in Korea and resulted in an aging society. Correspondingly, the social interest in the aging population has escalated immensely; however, research or product development on the quality of life for seniors has shortcomings. Healthcare smart clothing is required to help the elderly with changes and weaknesses that follow aging; however, there is unfortunately insufficient amounts available. This study explores the feasibilities of smart clothing for seniors based on a universal design. Based on previous research, we analyzed the universal design theory, body shape characteristics and design requirements for seniors, and heart rate measurement method. The design is different according to body shape and body shape is different between sex, age, and body race; therefore, subjects were limited to 70-74 year old Korean males in this study. This study proposes a guideline for heart rate sensing clothing that satisfies the 'universal design' aspects as well as the functionality of heart sensing, senior's physical characteristics and needs. It has broadened the range of smart clothing, which was once limited to the younger generation and provided a foundation for the development of specialized smart clothing for seniors.