• 제목/요약/키워드: 스마트폰 카메라 검출

검색결과 45건 처리시간 0.02초

엄지손가락 영상을 이용한 비접촉식 바이오인식 (Contactless Biometric Using Thumb Image)

  • 임나은;한재현;이의철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권12호
    • /
    • pp.671-676
    • /
    • 2016
  • 최근 금융과 기술이 결합된 핀테크 기술이 각광받고 있고 모바일 기기에서 바이오 정보를 이용한 간편 결제를 이용하는 사람들이 늘어나고 있다. 본 논문에서는 기존의 지문, 홍채, 정맥 인식과 같은 생체인식 시스템과 달리 별도의 센서 추가 없이 스마트폰의 후면 카메라로 촬영된 엄지손가락 후면 영상을 이용한 새로운 비접촉식 바이오인식 방법을 제안한다. 제안하는 방법에서는 엄지손가락의 길이, 너비, 주름 정보를 특징으로 사용한다. 이를 위해 가이드라인에 맞춘 엄지손가락 영상을 촬영하고, 조명 정규화, 피부색 영역 검출, 크기 정규화 및 정렬 과정을 거친 후 상관계수 계산을 통해 유사도를 측정한다. 인식 정확도 측정을 위해 동일인 매칭 및 타인 매칭을 진행하였으며, 오거부율이 1.55%일 때, 1.68%의 오수락율의 결과를 얻었다. 타인 매칭 결과에 대한 분포가 정규분포에 가깝게 나타나 보안성 측면에서 더욱 중요한 오수락율이 적다는 장점을 가진다. 오거부율이 15% 수준일 때 오수락율을 0%까지 낮출 수 있어 보안성을 우선시 하는 금융시장에서 본인 확인 목적의 바이오인식 방법으로 활용될 수 있을 것으로 판단된다.

ROS 기반 지능형 무인 배송 로봇 시스템의 구현 (Implementation of ROS-Based Intelligent Unmanned Delivery Robot System)

  • 공성진;이원창
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.610-616
    • /
    • 2023
  • 본 논문에서는 Robot Operating System(ROS) 기반의 모바일 매니퓰레이터(Manipulator)를 이용한 무인 배송 로봇 시스템을 구현하고 시스템 구현을 위해 사용된 기술에 대해 소개한다. 로봇은 엘리베이터를 이용해 건물 내부에서 자율주행이 가능한 모바일 로봇과 진공 펌프를 부착한 Selective Compliance Assembly Robot Arm(SCARA)-Type의 매니퓰레이터로 구성된다. 로봇은 매니퓰레이터에 부착된 카메라를 이용하여 이미지 분할과 모서리 검출을 통해 배송물을 들어올리기 위한 위치와 자세를 결정할 수 있다. 제안된 시스템은 스마트폰 앱 및 ROS와 연동된 웹서버를 통해 배송 현황을 조회하고 로봇의 실시간 위치를 파악할 수 있도록 사용자 인터페이스를 가지고 있으며, You Only Look Once(YOLO)와 Optical Character Recognition(OCR)을 통해 배송 스테이션에서 배송물과 주소지를 인식한다. 아울러 4층 건물 내부에서 진행한 배송 실험을 통해 시스템의 유효성을 검증하였다.

CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구 (A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique)

  • 임승철;고재승
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.149-155
    • /
    • 2020
  • 한국도로교통공단은 교통사고분석시스템(TAAS)을 활용하여 2015년부터 발생한 교통사고 원인을 분석한 통계를 제공하고 있다. 교통사고 발생 주요 원인으로, 2018년 한해 전체 교통사고 발생원인 중 전방주시 부주의가 대부분의 원인임을 TAAS를 통해 발표했다. 교통사고 원인에 대한 통계자료의 세부항목으로 운전 중 스마트폰 사용, DMB 시청 등의 안전운전 불이행 51.2%와 안전거리 미확보 14%, 보행자 보호의무 위반 3.6% 등으로, 전체적으로 68.8%의 비율을 보여준다. 본 논문에서는 Deep Learning의 알고리듬 중 CNN(Convolutional Neural Network)를 활용하여 첨단 운전자 보조 시스템 ADAS(Advanced Driver Assistance Systems)을 개선한 시스템을 제안하고자 한다. 제안된 시스템은 영상처리에 주로 사용되는 Conv2D 기법을 사용하여 운전자의 얼굴과 눈동자의 조향을 분류하는 모델을 학습하고, 차량 전방에 부착된 카메라로 자동차의 주변 object를 인지 및 검출하여 주행환경을 인지한다. 그 후, 학습된 시선 조향모델과 주행환경 데이터를 사용하여 운전자의 시선과 주행환경에 따라, 위험요소를 3단계로 분류하고 검출하여 운전자의 전방 및 사각지대 보조한다.

안드로이드 기반 스마트 캠 방식의 저가형 자동차 번호판 인식 시스템 구현에 관한 연구 (A Study On Low-cost LPR(License Plate Recognition) System Based On Smart Cam System using Android)

  • 이희열;이승호
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.471-477
    • /
    • 2014
  • 본 논문에서는 안드로이드 운영체제를 기반으로 하는 스마트 캠 방식의 저가형 자동차 번호판 인식 시스템을 제안한다. 제안하는 시스템은 휴대용 단말기와 서버로 구성된다. 단말기 하드웨어부는 ARM Cortex-A9(S5PV210) 프로세서로 이루어진 제어부, 전원부, 유무선통신부, 입출력부 등으로 구성된다. 단말기에 사용되는 카메라와 WiFi 모듈을 위한 리눅스 커널을 포팅하고 전용 디바이스 드라이버를 개발하였다. 번호판 인식 알고리즘은 캐니 에지검출기를 사용한 번호판 후보영역 설정, 레이블링을 이용한 번호판 번호 추출, 템플릿 매칭을 이용한 번호인식 등으로 구현된다. 단말기에 의하여 인식된 번호는 사용자가 소지한 휴대폰을 통하여 원격지의 서버에 전송되어 차량상태를 데이터베이스에서 검색하여 다시 단말기로 전송 해주게 된다. 본 논문에서 제안하는 시스템을 효용성을 입증하기 위하여 자연환경에서 사용자가 직접 단말기를 휴대하고 임의의 차량 번호판을 촬영하여 인식률을 확인한 결과, 95%의 인식률을 보였다. 제안된 시스템은 저가형의 휴대용 번호판 인식기에 적합하며, 안드로이드 운영체제를 사용함으로써 장기간 사용 시에도 시스템의 안정성을 가능케 하였다.

아두이노와 컬러센서를 이용한 색상 감지 기술 (Color Sensing Technology using Arduino and Color Sensor)

  • 송두섭;염호준;박상수
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.13-17
    • /
    • 2024
  • 컬러 센서는 인체를 포함한 물체의 사진을 촬영하여 모니터로 재현해 줄 대 사용하는 광학 센서이다. 컬러 센서는 물체에서 나오는 적색, 녹색, 청색의 빛을 각각 정량화하여 디지털 숫자로 표현하며, 그 값들을 비교하거나 혹은 그 비율을 비교하여 물체의 상태를 판단할 수 있다. 본 연구에서는 모니터에서 발현되는 표준 색상을 컬러 센서로 측정하여 서로간의 적색, 녹색, 청색 성분의 크기 즉 RGB 값들을 비교하였다. 컬러 센서 TCS 34725로 측정하였을 때 컴퓨터에서 발생시키는 빛이 적색, 녹색, 청색 빛 중 한 개 혹은 두 개의 빛 만으로 구성되어 있는 경우에도 컬러 센서는 세 가지 성분을 모두 검출하였다. 또한 같은 RGB 값을 가지는 두 가지 모니터의 색상도 컬러 센서로 측정하면 서로 다른 RGB 값이 측정되었다. 이 결과들은 모니터에 색상을 발현하는 데 이용되는 컬러 필터들의 불완전함과 컬러 센서에 사용되는 포토다이오드 들이 광 특성이 불완전하기 때문이라고 할 수 있다. 물체를 촬영하여 그 색상으로 그 물체의 상태를 판단할 때는 동일한 기종의 카메라 혹은 스마트 폰을 이용해야 할 것이다