• Title/Summary/Keyword: 순환 잔골재

Search Result 217, Processing Time 0.023 seconds

Development of High quality Recycled Aggregate Production Process from Waste Concrete for Resource Circulation System (자원순환형(資源循環型) 사회(社會) 구축(構築)을 위한 고품질(高品質) 순환골재(循環骨材) 생산(生産) 공정(工程) 개발(開發) 연구(硏究))

  • Kim, Kwan-Ho;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.27-35
    • /
    • 2009
  • To solve resource exhaustion and waste management problems caused by mass consumption, there are many efforts to change from resource consumption system to recycling system. Specially, interests about management of construction waste have increased, but efficient recycling system of waste concrete is not established yet. In this study, high quality recycled aggregate processing circuit was developed to recycle waste concrete. From the waste concrete which is a hydrated compound with coarse aggregate, fine aggregate, and cement material, high quality recycled coarse aggregate for concrete making was produced by autogenous milling and heat pretreatment method. After then, refinement process was performed to separate fine aggregate and cement material from waste concrete fines by sink float separation and hindered-settling separation. As a result, high quality recycled aggregate was produced from waste concrete by developed processing circuit.

Performance Evaluation of Recycled Aggregate Concrete Made of Recycled Aggregate Modified by Carbonation (탄산화 개질 순환 골재를 사용한 순환 골재 콘크리트의 성능 평가)

  • Ha, Jung-Soo;Shin, Jin-Hak;Chung, Lan;Kim, Han-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.445-454
    • /
    • 2016
  • With the increase of decrepit facilities, construction waste increased to a certain level and now the increase is more or less stabilized. Yet construction waste still constitutes the largest portion of the overall wastes. Also, it is inevitable to spend a huge amount of the national budget due to the aggravating shortage of aggregate caused by prohibition on collection of natural aggregates as well as due to the damage to the land and environment caused by development of the sources of aggregates. As a countermeasure to the situation, the Ministry of Land, Infrastructure and Transport promulgated the quality standard for recycled aggregate to manage the usage of recycled aggregate according to its quality. But use of recycled aggregate for the purpose of high added value still remains nominal. Therefore, this research aims to study the applicability of recycled aggregate concrete as structural concrete by evaluating the quality improvement effects and the performance of the recycled aggregate concrete including recycled fine aggregate and recycled coarse aggregate that have undergone carbonation for 4 days and 14 days respectively in the condition of 60% RH, 20% $CO_2$ and $20^{\circ}C$ temperature, suggested for carbonation modifying from the advance research. The result shows carbonation modify contributed to quality improvement with 0.91% decrease in absorption rate for recycled fine aggregate and 0.7% decrease in absorption rate for recycled coarse aggregate. The physical properties and durability of the recycled aggregate made of aggregate modified by carbonation showed results similar to general concrete, which confirmed the possibility of applying the recycled aggregate made of recycled aggregate modified by carbonation to structural concrete.

Capacity Evaluation of SFRC Beams Using Recycled Fine and Coarse Aggregates (순환 잔골재 및 굵은골재를 사용한 SFRC 보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2017
  • The aim of this study is a large amount use of recycled aggregates. The considering recycled aggregates replacement ratio is 50% that of natural aggregates. In order to increase the shear capacity of beams, that may be weaken by use of recycled aggregates, steel fibers are reinforced. The main variables are steel fiber volume fractions such as 0%, 0.5%, 0.75% and 1.0%. After the test, it could confirm that the strength and deformation capacity of beams with the steel fiber content values of 0.5% and 0.75% are comprehensively enhanced compared to non reinforcement. After evaluating the shear strength by using shear strength equations of previous researches, it concluded that the strength equation of Oh et al. (2008) is able to predict the shear strength of SFRC beams on the safety side.

Investigation on the Mechanical Properties of High-Strength Recycled Fine Aggregate Mortar Made of Nanosilica Dispersed by Sonication (나노실리카 혼입률이 실리카퓸 및 고로슬래그 미분말을 혼입한 4성분계 고강도 순환잔골재 모르타르의 역학적 성능에 미치는 영향)

  • Seong-Woo Kim;Rae-Gyo Moon;Eun-Bi Cho;Chul-Woo Chung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2023
  • In order to maximize the utilization of recycled fine aggregate, high strength mortar made of 100 % recycled fine aggregate was prepared, and its physical properties were evaluated to determine the possibility of using recycled fine aggregate as structural aggregate. The effect caused by the amount of nanosilica on the physical properties of w/b 0.2 recycled fine aggregate mortar consisting of cement, silica fume, and blast furnace slag. To improve the dispersion of nanosilica inside mortar, an aqueously dispersed nanosilica solution by ultrasonic tip sonication was prepared, and incorporated into the mortar to evaluate changes in mortar flow, porosity and compressive strength depending on nanosilica content. According to the experimental results, mortar flow decreased as the replacement ratio of nano-silica increased. As the replacement ratio of nanosilica increased up to 0.75 %, the porosity decreased and the compressive strength increased, but, at a replacement ratio of 1 %, the porosity increased and the compressive strength decreased. It was confirmed that the nano-silica replacement ratio of 0.75 % was optimum proportion to maximize the mechanical performance of high-strength recycled fine aggregate mortar.

Effect of Recycled Fine Aggregates and Fly Ash on the Mechanical Properties of PVA Fiber-Reinforced Cement Composites (순환잔골재 및 플라이애시가 PVA 섬유보강 시멘트 복합체의 역학적 특성에 미치는 영향)

  • Nam, Yi-Hyun;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do;Kim, Sun-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • As the amount of construction wastes increase, reuse of recycled materials is being considered in research areas. While there are many experimental investigations focusing on development of mortar and concrete using the recycled materials, the studies regarding the fiber-reinforced cement composites (FRCCs) using recycled materials are still limited. In this paper, an experimental attempt has been made to investigate the effect of recycled fine aggregates and fly ash on the mechanical properties of PVA FRCCs. The cement and natural sand were respectively replaced by fly ash and recycled fine aggregates at two content levels, 25% and 50%. Ten types of PVA FRCCs mixes were fabricated and tested to investigate the flexural, compressive and direct tensile behaviors. The test results show that flexural, compressive and direct tensile strength were decreased with increase in fly ash content at all ages. In particular, flexural, compressive and direct tensile strengths of specimens, containing 50% recycled fine aggregates and 50% fly ash, showed the lowest values. The modulus of elasticity of specimens showed similar trend to the 28-day compressive strength. Poisson's ratio was increased with increase in fly ash and recycled fine aggregates content.

Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition (순환골재 및 고로슬래그 시멘트를 사용한 증기양생 콘크리트의 강도 특성)

  • Lee Myung-Kue;Kim Kwang-Seo;Lee Keun-Ho;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.613-620
    • /
    • 2005
  • There are some problems in utilizing recycled concrete aggregate go structural use because of the difficulties concerning about quality control and durability. It seems to be possible to utilize recycled concrete aggregate for making concrete products because quality control of concrete products is easier than ready-mixed concrete, but there are little studies about the properties of the steam-cured recycled aggregate concrete. In this study, various tests were performed such as compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test to evaluate the effect of substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength decreased with the increase of the substitution ratio of recycled concrete aggregate, but it was in the reasonable range and almost equal to that of normal concrete below the substitution ratio of $50\%$. On the other hand, strength test of furnace slag cement concrete shows that the strength of recycled concrete with furnace slag cement under curing condition lower than that of recycled concrete with ordinary portland cement under same condition. From the result of this study, it can be concluded that recycled concrete aggregate is able to be utilized for structural use but substitution ratio should be decided with care in each case. The result of this study could be used as the basic data for the structural use of recycled concrete aggregate.

Fundamental Study for Extension of Application of Recycled Concrete Aggregate: Spun High Strength Concrete (순환골재의 사용성 확대를 위한 연구: 원심력콘크리트로의 적용)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Hyun-Jung;Kim, Taeg-Wang;Lee, Man-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.103-112
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete, there is use for the structural members. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics recycled concrete aggregate of the spun-concrete products with various coarse and fine recycled aggregate replacement ratio(coarse recycled aggregate: 0%, 20%, 40%, 60%, 100%; fine recycled aggregate: 0%, 30%, 60%, 100%) and with addition of cellulose fibers(0%, 0.01%, 0.03%, 0.05%, 0.08%). From the test results, The strength of spun concrete used with recycled aggregate [NR specimen], was measured as 72MPa, was found to be very approximately to the strength of spun concrete used with the natural aggregate(NN specimen), was measured as 74MPa, when only fine aggregate was replaced with the recycled. Therefore, the fine recycled concrete aggregate can be successfully used in the spun high strength concrete product. The compressive strength of all specimens used the specialty cellulose fiber were measured as about 70M Pa, however, the increasement of the specialty cellulose fiber content is showed to decrease compressive strength of spun concrete. Therefore, it is anticipated that the specialty cellulose fiber can be applied to the various spun concrete products.

  • PDF

Flexural Behavior of Reinforced Recycled Aggregate Concrete Beams (순환골재를 사용한 철근콘크리트 보의 휨거동 특성)

  • Song, Seon-Hwa;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2009
  • These days the amount of demolished concrete waste has been increasing due to reconstruction and redevelopment of aged buildings. So the use of recycled aggregates is recommended to solve environmental problems. Some investigations have been carried out to study the flexural behavior of reinforced concrete beams with recycled aggregates. But these have some limitation due to the use of low quality recycled aggregates and small-scale specimens in the laboratory. The purpose of this experimental study is to evaluate the flexural behavior of simply supported RC beams subjected to four-point monotonic loading and made with recycled aggregates. Seven full-scale RC beams were manufactured with different replacement level of recycled aggregates. The main parameters of the study are combination of aggregates. From the test results, the flexural behavior of the beam is described in terms of crack patterns and failure modes. And the flexural strength of RC beam with different types of recycled coarse aggregates and recycled fine aggregates is compared with the provision of KCI code.

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.