• Title/Summary/Keyword: 순환골재 미분말

Search Result 86, Processing Time 0.025 seconds

Improvement on the Properties of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료를 사용한 순환골재 콘크리트의 품질 개선)

  • Moon, Dae-Joong;Kim, Wan-Jong;Kim, Hak-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The aggregate, which does not satisfy the standard of KS F 2573, was selected for this investigation. The 28day compressive strength of recycled aggregate concrete without pozzolan material was 21.7MPa, which was less than the strength of concrete made with crushed stone. However, the compressive strength at 28 days was improved by mixing early rapid hardening cement to the cement at the weight ratio of 2.5%. Furthermore, the compressive strength at 91 days and 180 days increased significantly by adding fly ash, slag powder, and diatom powder. The tensile strength of recycled aggregate concrete with pozzolan material also increased about 40% compared to the general concrete. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom powder. Relationship between compressive strength and creep coefficient was shown to the linear relation like as ${\sigma}_c=-30CF+404$.

  • PDF

Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate (순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구)

  • Na, Chul-Sung;Choi, Hyeong-Gil;Kim, Young-Duck;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.469-472
    • /
    • 2008
  • As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. in this study. And it is to verify performance with evaluating quality of recycled fine aggregate. In consequence, it is identify that performance improvement effect of recycled fine aggregate by crushing recycled fine aggregate according to high-speed rotation impact, separating and collecting powder and minuteness dust according to centrifugal Force and mass defect, separating and reclaiming minuteness sand to mass defect.

  • PDF

Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type (탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성)

  • Han, Cheon-Goo;Lee, Dong-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • In this research, based on the condition of using desulfurization gypsum(FGD) as a stimulator for high-volume blast furnace slag cement mortar, sieving and heating process methods of removing activated carbon in FGD were compared with the non-processed FGD and recycled and natural fine aggregates were compared for suitable aggregate to be used. According to the result of experiment, sieving with 0.3mm was more efficient than $500^{\circ}C$ heating for processing the FGD, and recycled fine aggregate showed more favorable result than natural fine aggregate at the FGD content was 5 to 10%. On the other hand, the mortar mixture including recycled fine aggregate had a high drying shrinkage, and absorption ratio, and thus specific limitations on applying recycled fine aggregate should be required.

Effect of Grading of Fine Powder obtained from Recycled Aggregates on Fundamental Properties of Slag-based Mortar (고로슬래그 미분말에 순환골재 미분말의 입도 변화에 따른 무시멘트 모르타르의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Heo, Young-Sun;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.37-38
    • /
    • 2013
  • The fine powder obtained from the manufacturing process of recycled coarse aggregate contains unhydareted cement particles on their surface. It is believed that the alkalinity of the powder (11.0-12.5) is enough to active the slag-based composites. In this paper, the obtained powder was sieved and divided into two sizes, i.e., 0.08 mm and 0.3 mm, and added to the slag-based mortar. Results showed that the fine powder had an effect on the slump and the compressive strength of slag-based composites. With the different pH values of the powder, it could be seen that the distance between the two level powders. And found the peak 28 days compressive strength as the replacement ratio of the recycled aggregate powder changed. The findings from this study provide an indication that with achieved compressive strength, the fine powder can be used in a light weight concrete.

  • PDF

An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate (순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구)

  • Ryou, Jae Suk;Song, Il Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.193-203
    • /
    • 2011
  • The purpose of this study, looking to which the recycled fine aggregates from waste concrete have a lot of problems as a material for structure purpose, is applying the recycled fine aggregate to Self-Compacting Concrete(In the reminder of this paper, it often referred to as SCC) by using the characteristic which the powder containing the recycled fine aggregates can increase strength and liquidity. In this study, that is, the recycled fine aggregate powder is appropriate for developing high strength(over 40 MPa) and liquidity(JSCE 2 grade), the characteristic of the SCC and it was increased the ratio of mixing the recycled fine aggregates emerging from waste concrete and the normal fine aggregates by 25%, making differential in total 5 levels and applied to SCC. After all, this study was reviewed the physical properties of the fresh concrete, analyzed the mechanical properties and durability of the hardening concrete and tried to ensure the possibility of utilizing the recycled fine aggregates as a material for SCC. As a result, this study reached a conclusion that among the 5-level replacement ratios of the physical, mechanical analysis and the durability characteristics, the normal fine aggregates could be applied up to a replacement ratio of 50% more than the recycled fine aggregates and resulted in a deterioration in performance the replacement ratio larger than 50%. It is judged that the applicability of the real structures should be followed up in order to check the possibility of applying the recycled fine aggregates to real life.

Influence of Replacement Ratio of Wasted Refractory Aggregate on the Properties of Mortar using Blast Furnace Slag and Recycled Aggregate (폐내화물 골재 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.139-140
    • /
    • 2016
  • In this research, the possibility of wasted refractory aggregate pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory aggregate was replaced 2%.

  • PDF

Chemical Resistance of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료와 순환골재를 사용한 콘크리트의 화학약품 저항성)

  • Moon, Dae-Joong;Choi, Jae-Jin;Kim, Wan-Jong;Kim, Hak-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.63-69
    • /
    • 2010
  • This study investigates the chemical resistance of the recycled aggregate concrete containing calcined ground slag, fly ash, and diatom powder. The recycled aggregate which had the density of $2.48g/cm^3$, the absorption of 4.25%, and standard gradation was used and the concrete specimens were submerged in solutions of $Na_2SO_4$ and $CaCl_2$ at 10% concentration for 6 months. As the submersion result, pore volume of over $0.02{\mu}m$ diameter was formed less in the concrete specimens containing calcined ground slag, fly ash, and diatom powder than in the concrete without the pozzolanic materials and the result shows the effectiveness of the pozzolanic materials for the increase of chemical resistance of the recycled aggregate concrete.

  • PDF

A Study on the Mechanism of Recycled Sand Dry Manufacturing System (순환잔골재 건식생산시스템의 메커니즘에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Young-Bong;Na, Chul-Sung;Lee, Eui-Bae;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.481-484
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because waste concrete is greatly increased according to the rapid increasing of urban redevelopment project, but the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate. So the utilization of high quality recycled fine aggregate using construction and demolition waste concrete as new fine aggregate for construction industry is urgently. Accordingly, In this study, As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. And it is to examine mechanism of recycled sand dry manufacturing system.

  • PDF

Effect of the Replacement Ratio and Sources of Blast Furnace Slag Powder on the Fundamental Properties of Recycled Fine Aggregates Based Mortar (고로슬래그 미분말의 산지 및 치환율 변화가 순환잔골재 사용 시멘트 모르타르의 특성에 미치는 영향)

  • Han, Cheon-Goo;Zhao, Yang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • In this study, the quality of blast furnace slag and the engineering properties of recycled aggregate based mortar with variable replacement of blast furnace slag have been focused. Blast furnace slag(BS) manufactured in various areas in Korea were prepared for this study. For the investigation results, 4 types(among the all of 9 types) of the experimental results were identified as below the standard level when using blast furnace slag chosen from different factories. Especially the particle size of the blast furnace slag was considered as the largest problem. When using BS in the recycled aggregates based mortar, the increase amount of blast furnace slag, increased the fluidity but delayed the setting time and decreased strength at early age. Based on the relationship of the amount of BS and the engineering properties of mortar, this study found that the amount of $SO_3$ and L.O.I affect the setting time, 3 days strength and 91 days strength to the certain standard level.