• Title/Summary/Keyword: 순환골재

Search Result 639, Processing Time 0.024 seconds

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

Strength Development of the Concrete Incorporating Blast Furnace Slag and Recycled Aggregate as Alkali Activator (고로슬래그 미분말과 알칼리 자극재로서 순환골재를 사용하는 콘크리트의 강도발현 특성)

  • Kim, Jun-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • The objective of this study is to evaluate the strength development of blast furnace slag concrete in response to the use of recycled aggregate as alkali activator. The influence of the amount of recycled aggregate was evaluated depending on different ratios of replacement for each RFA and RCA to NFA and NCA, respectively. The results indicated that as replacement of RFA and RCA increased, their strength exhibited to be increased. This was due to the fact that the latent hydraulic properties of blast furnace slag was activated by the alkali in recycled aggregates. However, in case of 365-days, it showed lower compressive strength than using NA(natural aggregates) which could be explained as the exhaustively use of alkali containing in RA. The specimens using RA showed about 90% of compressive strength comparing with specimens using NA.

Bond Behavior of Recycled Coarse Aggregate Concrete Deteriorated by Freezing and Thawing (동결융해를 받은 순환 굵은골재 콘크리트의 부착성능)

  • Choi, Ki-Sun;Lee, Min-Jung;Yun, Hyun-Do;Kang, Ki-Woong;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1097-1100
    • /
    • 2008
  • The purpose of this study to investigate the bond strength of recycled coarse aggregate concrete deteriorated by freezing and thawing. Concrete specimens with recycled coarse aggregate representing lower limit of the quality standard (water absorption : 3.0%, specific gravity : $2.5g.cm^3$) were manufactured and tested. The replacement ratio (0, 30, 60 and 100%) of recycled coarse aggregate and freezing-thawing cycles were considered in this test. From the test results, it was found that the bond strength of normal strength concrete is not affected by the replacement ratio of recycled coarse aggregate under freezing and thawing conditions. Also, the bond strength of the natural and recycled coarse aggregate concrete using AE admixtures was not decreased by frost action.

  • PDF

Effect of Recycled Fine Aggregate Quality on Strength Properties of Concrete (순환잔골재 품질에 따른 콘크리트의 강도특성)

  • Jeon, Esther;Yun, Hyun-Do;Jang, Yong-Heon;Choi, Ki-Sun;Bae, Kee-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.609-612
    • /
    • 2008
  • This study investigated effect of recycled fine aggregate quality on strength properties of concrete. Some investigations have been carried out to study the strength properties of recycled aggregate concrete. But these have some limitation due to small-scale test in the laboratory. Therefore concrete using this study were fabricated by ready-mix concrete. Variables were quality of recycled fine aggregate(high and low quality) and replacement ratio of 0%, 30%, 60%, 100%(high quality), 35, 70%(low quality). The change of air content of recycled aggregate concrete were similar to natural aggregate concrete. Replacement ratio of recycled aggregate was not necessarily correlated with compressive strength and modulus of rupture of recycled aggregate concrete.

  • PDF

An Evaluation of Plastic and Early Dry Shrinkage of Fiber Reinforced Concrete Using Recycled Aggregate (순환잔골재를 활용한 섬유 보강 콘크리트의 소성 및 초기 건조수축평가)

  • Park, Yun-Mi;Kim, Young-Duck;Kim, Young-Sun;Kim, Ho-Dong;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.937-940
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because generation quantity of construction and demolition waste concrete is greatly increased according to the rapid increasing of urban redevelopment project. On the other hand, the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate by intensification of environment influence evaluation and the shortage of river fine aggregate. but a quality of aggregate as building structure is not demonstrated. Therefore it is the objective of this study to estimate plastic and early dry shrink crack of fiber reinforced concrete using a recycled aggregate by plat-ring test and mock-up test of exposure to the air. as a result, in case of plat- ring test, developing crack is wider using recycled aggregate concrete than natural aggregate concrete, is wider using fiber reinforced concrete than non fiber. in case of mock-up test of exposure to the air, it is similar to plat-ring test.

  • PDF

순환골재 품질기준

  • 한국레미콘공업협회
    • 레미콘
    • /
    • s.85
    • /
    • pp.58-69
    • /
    • 2005
  • 본자료는 건설교통부에서 마련한 순환골재 품질기준 중 콘크리트 분야만을 발췌하여 회원사 업무에 도움주고자 편집게재 합니다. -편집자주

  • PDF

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

Reduction of pH of Recycled Fine Aggregate due to Natural and Artificial Treatment Method (자연 및 인위적 처리방법 변화에 따른 순환잔골재의 pH저감)

  • Han, Cheon-Goo;Han, Min-Cheol;Han, Sang-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • This study is to comparatively analyze the characteristics of pH decrease in recycled fine aggregates for embankment and landfill produced from waste concrete by using natural process and artificial process. The result was as follows In case of recycled fine aggregates left outdoor, it was found that pH level was decreased if the thickness of embankment becomes thinner, or the materials left outdoors owing to high concentration of $CO_2$ in atmosphere caused by respirations of people. When the air was permeated, pH level was decreased more effectively. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$ in the recycled fine aggregates owing to high-pressure ventilators. In case of water spraying treatment, sprayed water facilitated hydration of unhydrated cement to dissolve calcium hydroxides which neutralized $CO_2$ in the atmosphere during desiccation process and decrease pH level by a considerable margin. In case of Immersed treatment, decrease of pH was not sufficient. When facilitating the supply of $CO_2$, pH level of the recycled fine aggregates was decreased by the largest margin. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$. From the above results, it was analyzed that the most effective method of reducing pH level of the recycled fine aggregates from the aspects of pH reduction performance, economic efficiency and workability was repeated wet-dry cycles of spraying water to the aggregates in the proportion of 1:0.5 by weight and then treating by forcefully blowing $CO_2$ gas into the aggregates.

  • PDF