• Title/Summary/Keyword: 순차설계영역

Search Result 44, Processing Time 0.03 seconds

Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model (2차 다항회귀 메타모델을 이용한 달착륙선 충격흡수 시스템의 순차적 근사 최적설계)

  • Oh, Min-Hwan;Cho, Young-Min;Lee, Hee-Jun;Cho, Jin-Yeon;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.314-320
    • /
    • 2011
  • In this work, optimization of two-stage shock absorption system for lunar lander has been carried out. Because of complexity of impact phenomena of shock absorption system, a 1-D constitutive model is proposed to describe the behavior of shock absorption system. Quadratic polynomial regression meta-model is constructed by using a commercial software ABAQUS with the proposed 1-D constitutive model, and sequential approximate optimization of two-stage shock absorption system has been carried out along with the constructed meta-model. Through the optimization, it is verified that landing impact force on lunar lander can be considerably reduced by changing the cell size and foil thickness of honeycomb structure in two-stage shock absorption system.

A Design for Solid-State Radar SSPA with Sequential Bias Circuits (순차바이어스를 이용한 반도체 레이더용 SSPA 설계)

  • Koo, Ryung-Seo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2479-2485
    • /
    • 2013
  • In this paper, we present a design for solid-state radar SSPA with sequential bias. We apply to variable extension pulse generator to eliminate signal distortion which is caused by bias rising/falling delay of power amplifier. There is an optimum impedance matching circuit to have high efficiency of GaN-power device by measuring microwave characteristics through load-pull method. The designed SSPA is consisted of pre-amplifier, drive-amplifier and main-amplifier as a three stages to apply for X-Band solid-state radar. Thereby we made a 200W SSPA which has output pulse maximum power shows 53.67dBm and its average power is 52.85dBm. The optimum design of transceiver module for solid-state pulse compression radar which is presented in this dissertation, it can be available to miniaturize and to improve the radar performances through additional research for digital radar from now on.

A Sequential Algorithm for Metamodel-Based Multilevel Optimization (메타모델 기반 다단계 최적설계에 대한 순차적 알고리듬)

  • Kim, Kang-Min;Baek, Seok-Heum;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1198-1203
    • /
    • 2008
  • An efficient sequential optimization approach for metamodel was presented by Choi et al [6]. This paper describes a new approach of the multilevel optimization method studied in Refs. [5] and [21-25]. The basic idea is concerned with multilevel iterative methods which combine a descent scheme with a hierarchy of auxiliary problems in lower dimensional subspaces. After fitting a metamodel based on an initial space filling design, this model is sequentially refined by the expected improvement criterion. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to understand and use. As a check on effectiveness, the proposed method is applied to a classical cantilever beam.

  • PDF

Development of the Local Area Design Module for Planning Automated Excavator Work at Operation Level (자동화 굴삭로봇의 운용단위 작업계획수립을 위한 로컬영역설계모듈 개발)

  • Lee, Seung-Soo;Jang, Jun-Hyun;Yoon, Cha-Woong;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.363-375
    • /
    • 2013
  • Today, a shortage of the skilled operator has been intensified gradually and the necessity of an earthwork in extreme environment operators are difficult to access is increasing for the purpose of resource development and new living space creation. For this reason, an effort to develop an unmanned excavation robot for fully automated earthwork system is continuing globally. In Korea, a research consortium called 'Intelligent Excavation System' has been formed since 2006 as a part of Construction Technology Innovation Program of Ministry of Land, Transport and Maritime Affairs of Korea. Among detailed technologies of the Task Planning System is one of the core technologies of IES, this paper explains research and development process of the Local Area Design Module, which provides informatization unit to create automated excavators' work command information at operation level such as location, range, target, and sequence for excavation work. Designing of Local Area should be considered various influential factors such as excavator's specification, working mechanism, heuristics, and structural stability to create work plan guaranteed safety and effectiveness. For this research, conceptual and detail design of the Local Area is performed for analyzing design element and variable, and quantization method of design specification corresponding with heuristics and structural safety is generated. Finally, module is developed through constructed algorithm and developed module is verified.

Applying Axiomatic Design to Design Evaluation of a Deep-Sea Manganese Nodule Miner (공리적 설계를 적용한 심해저 망간단괴 집광시스템의 설계평가)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Lee, Tae-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.246-251
    • /
    • 2008
  • The conceptual design evaluation of Deep-Sea Manganese Nodule Miner(DSNM) based on Axiomatic Design was preformed. Functional Requirements(FRs) in functional domain and Design Parameters(DPs) in physical domain were embodied for the given concept design of DSNM. Interactions between FRs and DPs were sequentially analyzed from the first level hierarchy to the lower level hierarchy. The interactions were expressed as design matrices which showed the dependence or independence between FRs and DPs. The results showed that the design of DSNM was not a coupled one, but a decoupled. Finally, it was conceptually verified that DSNM was a good design satisfying the independence axiom of the Axiomatic Design.

A Study on the Design of Content Addressable and Reentrant Memory(CARM) (Content Addressable and Reentrant Memory (CARM)의 설계에 관한 연구)

  • 이준수;백인천;박상봉;박노경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.46-56
    • /
    • 1991
  • In this paper, 16word X 8bit Content Addressable and Reentrant Memory(CARM) is described. This device has 4 operation modes(read, write, match, reentrant). The read and write operation of CARM is like that of static RAM, CARM has the reentrant mode operation where the on chip garbage collection is accomplished conditionally. Thus function can be used for high speed matching unit of dynamic data flow computer. And CARM also can encode matching address sequentially according to therir priority. CARM consists of 8 blocks(CAM cell, Sequential Address Encoder(S.A.E). Reentrant operation. Read/Write control circuit, Data/Mask Register, Sense Amplifier, Encoder. Decoder). Designed DARM can be used in data flow computer, pattern, inspection, table look-up, image processing. The simulation is performed using the QUICKSIM logic simulator and Pspice circuit simulator. Having hierarchical structure, the layout was done using the 3{\;}\mu\textrm{m} n well CMOS technology of the ETRI design rule.

  • PDF

A design of hub-and-spoke networks to integrate hub-spoke location and vehicle routing: symbiotic evolutionary algorithm based approach (허브와 스포크의 입지선정과 차량경로가 통합된 hub-and-spoke 네트워크 설계: 공생진화알고리듬 기반의 접근법에 의해)

  • Sin Gyeong-Seok;Kim Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1036-1041
    • /
    • 2006
  • 본 연구에서는 허브와 스포크의 입지선정과 차량 경로가 통합된 hub-and-spoke 네트워크 설계문제를 다룬다. Hub-and-spoke 네트워크는 대량화와 공동화를 통해 물류효율화를 실현하기 위한 대표적인 구조로 물류시스템에서 흔히 사용되고 있다. 이러한 물류시스템에서 물류비용의 절감과 고객서비스 향상을 위한 효율적인 수송네트워크 설계는 매우 중요하다. 전통적인 hub-and-spoke 네트워크 설계문제에서 각 스포크의 위치와 화물량이 미리 주어진 상황에서 허브의 입지를 결정하였다. 하지만 스포크 역시 스포크가 담당하는 고객들의 위치와 담당 영역에 따라 그 위치와 수, 그리고 화물량이 변할 수 있다. 또한 정확한 비용산출을 위해서는 스포크에서 고객으로의 수집과 배달을 위한 차량경로가 함께 고려되어야 한다. 다루는 수송망 설계문제는 상호 관련성 있는 여러 부분문제가 결합된 통합문제로써 이를 해결하는 방법으로 기존의 발견적 방법에 의한 순차적 기법은 한계가 있다. 본 연구에서는 공생 진화알고리듬 기반의 방법론을 채용하여 다루는 수송망 설계문제를 동시에 통합적으로 해결할 수 있는 알고리듬을 개발한다. 실험을 통해 개발한 알고리듬의 우수성과 그 적용성을 보인다.

  • PDF

Robust Control of Input/state Asynchronous Machines with Uncertain State Transitions (불확실한 상태 천이를 가진 입력/상태 비동기 머신을 위한 견실 제어)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.39-48
    • /
    • 2009
  • Asynchronous sequential machines, or clockless logic circuits, have several advantages over synchronous machines such as fast operation speed, low power consumption, etc. In this paper, we propose a novel robust controller for input/output asynchronous sequential machines with uncertain state transitions. Due to model uncertainties or inner failures, the state transition function of the considered asynchronous machine is not completely known. In this study, we present a formulation to model this kind of asynchronous machines ana using generalized reachability matrices, we address the condition for the existence of an appropriate controller such that the closed-loop behavior matches that of a prescribed model. Based on the previous research results, we sketch design procedure of the proposed controller and analyze the stable-state operation of the closed-loop system.

Sequential Approximate Optimization Based on a Pure Quadratic Response Surface Method with Noise Filtering (노이즈 필터링을 적용한 반응표면 기반 순차적 근사 최적화)

  • Lee Yongbin;Lee Ho-Jun;Kim Min-Soo;Choi Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.842-851
    • /
    • 2005
  • In this paper, a new method for constrained optimization of noisy functions is proposed. In approximate optimization using response surface methods, if constraints have severe noise, the approximate feasible region defined by approximate constraints is apt to include some of the infeasible region defined by actual constraints. This can cause the approximate optimum to converge into the infeasible region. In the proposed method, the approximate optimization is performed with the approximate constraints shifted by their deviations, which are calculated using a diagonal quadratic response surface method. This can prevent the approximate optimum from converging into the infeasible region. To fit the objective and constraints into diagonal quadratic models, we select the center and 4 additional points along each axis of design variables as experimental points. The deviation of each function is calculated using the differences between the real and approximate function values at the experimental points. A sequential approximate optimization technique based on the trust region algorithm is adopted to manage approximate models. The proposed approach is validated by solving some design problems. The results of the problems show the effectiveness of the proposed method.

Designing the Framework of Evaluation on Learner's Cognitive Skill for Artificial Intelligence Education through Computational Thinking (Computational Thinking 기반 인공지능교육을 통한 학습자의 인지적역량 평가 프레임워크 설계)

  • Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to design the framework of evaluation on learner's cognitive skill for artificial intelligence(AI) education through computational thinking. To design the rubric and framework for evaluating the change of leaner's intrinsic thinking, the evaluation process was consisted of a sequential stage with a) agency that cognitive learning assistance for data collection, b) abstraction that recognizes the pattern of data and performs the categorization process by decomposing the characteristics of collected data, and c) modeling that constructing algorithms based on refined data through abstraction. The evaluating framework was designed for not only the cognitive domain of learners' perceptions, learning, behaviors, and outcomes but also the areas of knowledge, competencies, and attitudes about the problem-solving process and results of learners to evaluate the changes of inherent cognitive learning about AI education. The results of the research are meaningful in that the evaluating framework for AI education was developed for the development of individualized evaluation tools according to the context of teaching and learning, and it could be used as a standard in various areas of AI education in the future.