• Title/Summary/Keyword: 순위예측

Search Result 371, Processing Time 0.027 seconds

Trajectory Prediction by Using Contextual LSTM based Variational AutoEncoder (Contextual LSTM 기반 변분 오토인코더를 이용한 이동 경로 예측)

  • Cho, KwangHo;Cha, JaeHyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.587-590
    • /
    • 2020
  • 스마트폰, GPS 장비, 위치 기반 소셜네트워크의 발달로 방대한 이동 경로 데이터 수집이 가능하게 됐다. 이를 통해 다양한 분야에서 GPS 데이터를 가지고 사람의 이동성을 분석하고 POI를 예측하는 기회가 많아졌다. 실생활에서 사람의 이동성은 다양한 상황에 영향을 받지만, 실제 GPS 데이터는 위치, 시간 정보의 수준이다. 따라서 다양한 상황을 내재하는 정보가 사람의 이동성 분석과 POI 예측에 필요하다. 본 논문에서는 POI의 순위, 사용자의 POI 활동, 카테고리 선호도 같은 맥락적 특징을 이용하여 이에 관련된 상황에 맞는 POI 시퀀스를 예측하는 Contextual LSTM 기반 딥러닝 기법을 제안한다. Contextual LSTM은 사람의 이동성에 영향을 주는 시퀀스의 맥락적 특징을 모델에 통합하기 위해 LSTM을 확장한다. 제안된 기법은 HITS 알고리즘과 여러 제약조건 기반으로 추출한 맥락적 특징별로 딥 러닝 모델에 통합하여 각각 POI 시퀀스를 검출했으며, 다양한 맥락적 특징에 대해서 공공 데이터와 수집한 데이터로 평가하였다.

Selection of Representative GCM Based on Performance Indices (성능지표 기반 대표 GCM 선정)

  • Song, Young Hoon;Chung, Eun Sung;Mang, Ngun Za Luai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.101-101
    • /
    • 2019
  • 전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.

  • PDF

Prediction of classified snow damage using DPSIR and multiple regression analysis (DPSIR 및 다중회귀분석을 이용한 등급별 대설피해 예측)

  • Hyeong Joo Lee;Hyeon Bin Jang;Gunhui Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.426-426
    • /
    • 2023
  • 대설은 일반적으로 해양과 대륙의 온도차가 큰 지역, 바다·호수와 같이 상대적으로 따뜻한 곳이 인접해 있어 기단 변질이 잘 일어나는 지역, 산악에 의해 습윤한 공기가 강제 상승되는 지역에서 자주 발생한다. 우리나라는 찬 대륙고기압 공기가 해수 온도 차로 눈 구름대가 만들어지거나, 고기압 가장자리에서 한기를 동반한 상층 기압골이 우리나라 상공을 통과하면서 대설이 발생한다. 최근 우리나라에서 빈번하게 발생하는 대설피해는 직접피해와 간접피해로 나뉘며, 이에 따라 사회·경제적으로 막대한 피해를 야기한다. 우리나라 대설피해양상은 지역적 특성, 방재 대책, 대처능력 등에 따라 달라지는 것이 특징이며, 지역적으로 다르게 발생하는 대설피해를 효과적으로 대비할 수 있는 연구가 필요하다. 따라서 본 연구에서는 지역적 특성을 고려한 차등화된 대설 피해를 예측하는 연구를 진행하고자 하였다. 본 연구에서는 기상요소 및 사회·경제적 요소 등을 입력자료로 활용하고, DPSIR 분석을 통해 Red Zone, Orange Zone, Yellow Zone, Green Zone으로 위험 등급을 분류 및 등급 별 대설피해 예측기법을 개발하였다. 최종적으로 1994년부터 2020년까지의 과거 대설 피해액 자료와 다중회귀분석을 이용하여 기법을 개발하였고, 기법의 예측력 평가를 위해 RMSE와 RMSE를 표준화한 NRMSE의 두 가지 통계 지표를 사용하여 평가하였다. 모형별 예측력 평가 결과 Yellow 등급 모형이 가장 우수한 예측력을 보였다. 추후 본 연구결과를 통해 대설피해 범위를 예측하는 연구가 진행된다면 사전에 대설피해에 대한 대응방안 수립과 지역별제설 우선순위를 결정할 수 있는 지표가 개발될 것으로 기대된다.

  • PDF

Predicting and Reviewing the Amount of Snow Damage in Korea using Statistical and Machine Learning Techniques (통계기법 및 기계학습 기법을 이용한 우리나라 대설피해액 예측 및 적용성 검토)

  • Lee, Hyeong Joo;Lee, Keun Woo;Jang, Hyeon Bin;Chung, Gun Hui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.384-384
    • /
    • 2022
  • 과거의 우리나라 대설피해 양상을 살펴보면 지역적으로 집중되어 피해가 발생하는 것이 특징이다. 그러나 현재는 전국적으로 대설피해가 가중되는 추세이며, 이에 따라 대설피해에 대비 가능한 대책의 강구가 필요한 실정이다. 그러나 피해 발생 시 정확한 피해 예측으로 사전에 재난을 대비가 가능한 수준의 연구는 미흡한 실정이다. 따라서 본 연구에서는 다양한 통계기법과 기계학습 기법을 이용하여 대설로 인해 발생한 피해액을 개략적으로 예측이 가능한 모형을 개발하고자 하였다. 대설피해액 예측 모형은 다중회귀분석, 서포트 벡터 머신, 인공신경망 기법, 랜덤포레스트 기법을 이용하여 총 4가지 기법으로 개발하였으며, 독립변수로 사회·경제적 요소, 기상요소를 사용하였고, 종속변수로는 1994년부터 2020년까지 발생한 대설피해 이력의 대설피해액을 사용하였다. 결과적으로 4가지 예측 모형의 예측력 검증 및 기법 간의 예측력을 비교하여 개발한 모형의 적용성을 검토하였다. 본 연구 결과에서 제시한 모형의 개선방안 및 업데이트 방안을 참고하여 후속 연구가 진행된다면 미래에 전국적으로 확대될 대설피해에 대한 대비가 가능할 것으로 기대되며 복구비 및 예방비 투자의 지역적 우선순위를 분석하여 선제적인 대비가 가능할 것으로 판단된다.

  • PDF

An Empirical Study on Statistical Optimization Model for the Portfolio Construction of Sponsored Search Advertising(SSA) (키워드검색광고 포트폴리오 구성을 위한 통계적 최적화 모델에 대한 실증분석)

  • Yang, Hognkyu;Hong, Juneseok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.167-194
    • /
    • 2019
  • This research starts from the four basic concepts of incentive incompatibility, limited information, myopia and decision variable which are confronted when making decisions in keyword bidding. In order to make these concept concrete, four framework approaches are designed as follows; Strategic approach for the incentive incompatibility, Statistical approach for the limited information, Alternative optimization for myopia, and New model approach for decision variable. The purpose of this research is to propose the statistical optimization model in constructing the portfolio of Sponsored Search Advertising (SSA) in the Sponsor's perspective through empirical tests which can be used in portfolio decision making. Previous research up to date formulates the CTR estimation model using CPC, Rank, Impression, CVR, etc., individually or collectively as the independent variables. However, many of the variables are not controllable in keyword bidding. Only CPC and Rank can be used as decision variables in the bidding system. Classical SSA model is designed on the basic assumption that the CPC is the decision variable and CTR is the response variable. However, this classical model has so many huddles in the estimation of CTR. The main problem is the uncertainty between CPC and Rank. In keyword bid, CPC is continuously fluctuating even at the same Rank. This uncertainty usually raises questions about the credibility of CTR, along with the practical management problems. Sponsors make decisions in keyword bids under the limited information, and the strategic portfolio approach based on statistical models is necessary. In order to solve the problem in Classical SSA model, the New SSA model frame is designed on the basic assumption that Rank is the decision variable. Rank is proposed as the best decision variable in predicting the CTR in many papers. Further, most of the search engine platforms provide the options and algorithms to make it possible to bid with Rank. Sponsors can participate in the keyword bidding with Rank. Therefore, this paper tries to test the validity of this new SSA model and the applicability to construct the optimal portfolio in keyword bidding. Research process is as follows; In order to perform the optimization analysis in constructing the keyword portfolio under the New SSA model, this study proposes the criteria for categorizing the keywords, selects the representing keywords for each category, shows the non-linearity relationship, screens the scenarios for CTR and CPC estimation, selects the best fit model through Goodness-of-Fit (GOF) test, formulates the optimization models, confirms the Spillover effects, and suggests the modified optimization model reflecting Spillover and some strategic recommendations. Tests of Optimization models using these CTR/CPC estimation models are empirically performed with the objective functions of (1) maximizing CTR (CTR optimization model) and of (2) maximizing expected profit reflecting CVR (namely, CVR optimization model). Both of the CTR and CVR optimization test result show that the suggested SSA model confirms the significant improvements and this model is valid in constructing the keyword portfolio using the CTR/CPC estimation models suggested in this study. However, one critical problem is found in the CVR optimization model. Important keywords are excluded from the keyword portfolio due to the myopia of the immediate low profit at present. In order to solve this problem, Markov Chain analysis is carried out and the concept of Core Transit Keyword (CTK) and Expected Opportunity Profit (EOP) are introduced. The Revised CVR Optimization model is proposed and is tested and shows validity in constructing the portfolio. Strategic guidelines and insights are as follows; Brand keywords are usually dominant in almost every aspects of CTR, CVR, the expected profit, etc. Now, it is found that the Generic keywords are the CTK and have the spillover potentials which might increase consumers awareness and lead them to Brand keyword. That's why the Generic keyword should be focused in the keyword bidding. The contribution of the thesis is to propose the novel SSA model based on Rank as decision variable, to propose to manage the keyword portfolio by categories according to the characteristics of keywords, to propose the statistical modelling and managing based on the Rank in constructing the keyword portfolio, and to perform empirical tests and propose a new strategic guidelines to focus on the CTK and to propose the modified CVR optimization objective function reflecting the spillover effect in stead of the previous expected profit models.

Identifying Priority of Subjects for Training Port Logistics Professionals in Secondary Education (항만물류 전문인력 양성을 위한 중등교육과정의 우선순위 도출)

  • Lee, Chang-Hoon;Kang, Da-Yeon;Chang, Myung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.837-846
    • /
    • 2011
  • Due to its vast range of areas and scopes of port logistics, professional training for port logistics experts has faced a limitation to raise manpower that the nation and companies ask for. This study looks at the current and expected demand and supply of workforce to identify necessary subjects and competitive factors in secondary education for training port logistics experts. Based on previous studies, this study proposes an assessment model by eliciting the priority of subjects in secondary education. and then, provides reasons for decision making.

Predicting the Potential Habitat and Risk Assessment of Amaranthus patulus using MaxEnt (Maxent를 활용한 가는털비름(Amaranthus patulus)의 잠재서식지 예측 및 위험도 평가)

  • Lee, Yong Ho;Na, Chea Sun;Hong, Sun Hea;Sohn, Soo In;Kim, Chang Suk;Lee, In Yong;Oh, Young Ju
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.672-679
    • /
    • 2018
  • This study was conducted to predict the potential distribution and risk of invasive alien plant, Amaranthus patulus, in an agricultural area of South Korea. We collected 254 presence localities of A. patulus using field survey and literature search and stimulated the potential distribution area of A. patulus using maximum entropy modeling (MaxEnt) with six climatic variables. Two different kinds of agricultural risk index, raster risk index and regional risk index, were estimated. The 'raster risk index' was calculated by multiplying the potential distribution by the field area in $1{\times}1km$ and 'regional risk index' was calculated by multiplying the potential distribution by field area proportion in the total field of South Korea. The predicted potential distribution of A. patulus was almost matched with actual presence data. The annual mean temperature had the highest contribution for distribution modeling of A. patulus. Area under curve (AUC) value of the model was 0.711. The highest regions were Gwangju for potential distribution, Jeju for 'raster risk index' and Gyeongbuk for 'regional risk index'. This different ranks among the index showed the importance about the development of various risk index for evaluating invasive plant risk.

A Study on the Improvement Direction of Defense S&T Forecasting (국방과학기술예측 발전방향에 대한 연구)

  • Lee, Myung-Whan;Yang, Hae-Sool
    • Convergence Security Journal
    • /
    • v.6 no.4
    • /
    • pp.121-132
    • /
    • 2006
  • Every country of the world have made their desirable future by improving the methodology of technology forecasting with priority, selection and concentration, despite the limited budget. About 20 years have passed since Defense S&T forecasting has been initiated but supplier-centered technology forecasting has caused the lack of usefulness for the customers. Therefore, we will search and offer technologies that customers need, based on the methodology of technology foresight that has started in England. It is a real value of Defense S&T forecasting that will help our nation, a smaller and weaker country compared to our neighboring countries, has a secure future and prosperity. For this consideration, 8 directions of the development for Defense S&T forecasting are suggested.

  • PDF

Design and Implementation of IPC Component in M3K (M3K에서 IPC 컴포넌트 설계 및 구현)

  • Kim, Young-Ho;Ko, Young-Woong;Yoo, Chuck
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.35-37
    • /
    • 2000
  • M3K(MutiMedia MicroKernel)는 멀티미디어에서 요구하는 실시간 특성을 지원할 수 있는 것을 목표로 하고 있으며, 이를 위해서 마이크로 커널 구조로서 설계되었다. 마이크로 커널은 내부에서 발생하는 지연시간이 작고 예측 가능하므로 실시간 시스템을 지원하기에 적합하다. 그러나 서버간의 빈번한 메시지 교환에 따른 IPC 병목현상은 전체 시스템의 성능을 저하시키고, 외부 이벤트에 대한 실시간 처리를 어렵게 한다. 본 연구에서는 M3K 에서 실시간 특성을 지원할 수 있도록 IPC를 설계 및 구현하는 것을 목표로 하고 있다. 이에 대한 접근방법으로는 IPC 중에 발생되는 쓰레드 간의 문맥 전환을 소프트웨어적으로 구현하고, IPC를 우선 순위가 부여된 시그널 객체를 이용하여 처리하고 있다. 따라서 빈번하게 발생되는 문맥 전환의 비용을 최소화함으로써 캐쉬 미스 및 TLB 미스를 줄이고, 우선 순위가 높은 이벤트나 IPC부터 처리될 수 있게 한다.

  • PDF

A Study on Fuzzy Control Algorithm for Prediction of Buffer threshold value in ATM networks (ATM망에서 버퍼의 임계값 예측을 위한 퍼지 제어 알고리즘에 관한 연구)

  • 정동성;이용학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.664-669
    • /
    • 2002
  • In this paper, we propose the fuzzy control algorithm for effective buffer control to connected traffic in ATM networks. The proposed Fuzzy control algorithm has two priorities and uses Fuzzy sets to search for dynamic thresholds. In this words, the difuzzification value controls the threshold in the buffer to according to traffic priority (low or high) using fuzzy set theory for traffic connected after reasoning. Performance analysis result: it was confirmed that with the proposed scheme, performance improves at cell loss rate, when compared with the existing PBS scheme.