• Title/Summary/Keyword: 순방향 전압

Search Result 87, Processing Time 0.026 seconds

A novel TIGBT tructure with improved electrical characteristics (향상된 전기적 특성을 갖는 트렌치 게이트형 절연 게이트 바이폴라 트랜지스터에 관한 연구)

  • Koo, Yong-Seo;Son, Jung-Man
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2007
  • In this study, three types of a novel Trench IGBTs(Insulated Gate Bipolar Transistor) are proposed. The first structure has P-collector which is isolated by $SiO_2$ layer to enhance anode-injection-efficiency and enable the device to have a low on-state voltage drop(Von). And the second structure has convex P-base region between both gates. This structure may be effective to distributes electric-field crowded to gate edge. So this structure can have higher breakdown voltage(BV) than conventional trench-type IGBT(TIGBT). The process and device simulation results show improved on-state, breakdown and switching characteristics in each structure. The first one was presented lower on state voltage drop(2.1V) than that of conventional one(2.4V). Also, second structurehas higher breakdown voltage(1220V) and faster turn off time(9ns) than that of conventional structure. Finally, the last one of the proposed structure has combined the two structure (the first one and second one). This structure has superior electric characteristics than conventional structure about forward voltage drop and blocking capability, turnoff characteristics.

  • PDF

The Results Comparison of Measurement and Simulations in ISL(Integrated Schottky Logic) Gate (ISL 게이트에서 측정과 시뮬레이션의 결과 비교)

  • 이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.157-165
    • /
    • 2001
  • We analyzed the electrical characteristics of platinum silicide schottky junction to develope the voltage swing in Integrated Schottky Logic gates, and simulated the characteristics with the programs in this junctions. Simulation programs for analytic characteristics are the Medichi tool for device structure, Matlab for modeling and SUPREM V for fabrication process. The silicide junctions consist of PtSi and variable silicon substrate concentrations in ISL gates. Input parameters for simulation characteristics were the same conditions as process steps of the device farications process. The analitic electrical characteristics were the turn-on voltage, saturation current, ideality factor in forward bias, and has shown the results of breakdown voltage between actual characteristics and simulation characteristics in reverse bias. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height were decreased but saturation current and ideality factor were increased by substrates increased concentration variations.

  • PDF

The Modeling of ISL(Intergrated Schottky Logic) Characteristics by Computer Simulations (컴퓨터 시뮬레이션에 의한 ISL 특성의 모델링)

  • 김태석
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.535-541
    • /
    • 2000
  • In this paper, we analyzed the characteristics of schottky junction to develop the voltage swing of ISL, and simulated the characteristics with the programs at this junctions. Simulation programs for analytic characteristics are the SUPREM V, SPICE, Medichi, Matlab. The schottky junction is rectifier contact between platinum silicide and silicon, the characteristics with programs has simulated the same conditions. The analytic parameters were the turn-on voltage, saturation current, ideality factor in forward bias, and has shown the results of breakdown voltage between actual characteristics and simulation characteristics in reverse bias. As a result, th forward turn-on voltage, reverse breakdown voltage, barrier height were decreased but saturation current and ideality factor were increased by substrates increased concentration variations.

  • PDF

2500V IGBTs with Low on Resistance and Faster Switching Characteristic (낮은 온-저항과 빠른 스위칭 특성을 갖는 2500V급 IGBTs)

  • Shin, Samuell;Koo, Yong-Seo;Won, Jong-Il;Kwon, Jong-Ki;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • This paper presents a new Insulated Gate Bipolar Transistor(IGBT) based on Non Punch Through(NPT) IGBT structure for power switching device. The proposed structure has adding N+ beside the P-base region of the conventional IGBT structure. The added n+ diffusion of the proposed device ensure device has faster turn-off time and lower forward conduction loss than the conventional IGBT structure. But, added n+ region can reduce th breakdown voltage and latching current density of the proposed device due to its high doping concentration. This problems can be overcome by using diverter on the right side of the device. In the simulation results, turn-off time of the proposed device is 0.3us and the on-state voltage drop is 3V. The results show that the proposed device has superior characteristic than conventional structure.

  • PDF

4H-SiC Trench-type Accumulation Super Barrier Rectifier(TASBR) for Low Forward Voltage drop (낮은 순방향 전압 강하를 갖는 4H-SiC Trench-type Accumulation Super Barrier Rectifier(TASBR))

  • Bae, Dong-woo;kim, Kwang-soo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.73-76
    • /
    • 2017
  • SiC devices have drawn much attentions for its wide band gap material properties. Especially 4H-SiC Schottky barrier diode is widely used for its rapid switching speed and low forward voltage drop. However, the low reliability of Schottky barrier diode has many problems that Super Barrier Rectifier(SBR) was researched for alternative. makes 4H-SiC trench-type accumulation super barrier rectifier(TASBR) is analyzed and proposed in this paper. We could verified that forward voltage drop was improved 21.06% without severe degradation of reverse breakdown voltage and leakage current based on the results from 2-D numerical simulations. With this novel rectifier structure, we can expect application with less power loss.

Reliability Analysis in PtSi-nSi Devices with Concentration Variations of Junction Parts (접합 부분의 농도 변화를 갖는 PtSi-nSi 소자에서 신뢰성 분석)

  • 이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.229-234
    • /
    • 1999
  • We analyzed the reliability characteristics in platinum schottky diodes with variations of n-type silicon substrates concentrations and temperature variations of measurements. The parameters of reliability measurement analysis are saturation current. turn-on voltage and ideality factor in the forward bias, the breakdown voltage in the reverse bias with device shapes. The shape of devices are square type and long rectangular type for edge effect. As a result, we analyzed that the forward turn-on voltage, barrier height, dynamic resistance and reverse breakdown voltage were decreased but ideality factor and saturation current were increased by increased concentration in platinum and n-silicon junction parts. In measurement temperature(RT, $50^{\circ}C$, $75^{\circ}C$), the extracted electrical parameter values of reliability characteristics were increased at the higher temperature under the forward and reverse bias. The long rectangular type devices were more decreased than the square type in reverse breakdown voltage by tunneling effects of edge part.

  • PDF

Annealing effect of Schottky contact on the characteristics of 1300 V 4H-SiC SBDs (1300 V급 4H-SiC SBDs의 Contact의 특성에 미치는 열처리 효과)

  • 강수창;금병훈;도석주;제정호;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.30-33
    • /
    • 1999
  • 본 연구에서는 Pt/f4-SiC Schottky barrier diodes(SBDs)의 소자 성능향상과 미세구조와의 상관관계를 규명하였다. 다른 열처리 온도구간에 따른 금속/SiC 계면의 미세구조 평가는 X-ray scattering법을 사용하여 분석하였다. 소자의 역 방향 특성은 열처리 온도가 증가함에 따라 저하되었다. As-deposited와 $850^{\circ}C$ 온도에서 열처리된 소자의 최대 항복전압은 각각 1300 V와 626 V 이었다. 그러나, 소자의 순방향 특성은 열처리 온도가 증가함에 따라 향상되었다. X-ray scattering법으로 >$650^{\circ}C$ 이상의 열처리 온도에서는 Pt/SiC 계면에서 Pt-silicides가 형성되었고, 이러한 Silicides의 형성이 Pt/SiC 계면의 평활도를 증가시킨 원인이 됨을 보였다. SBDs의 순방향 특성은 열처리 과정동안 Pt/SiC 계면에서 형성된 silicides의 결정성에 강하게 의존함을 알 수 있었다.

  • PDF

GaN Schottky Barrier Diode Employing a Trench Structure (트렌치 구조를 이용한 GaN 쇼트키 장벽 다이오드)

  • Choi, Young-Hwan;Ha, Min-Woo;Lee, Seung-Chul;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2004-2006
    • /
    • 2005
  • 트렌치 애노드 컨택을 설계하여 순방향 전압강하를 감소시키는 GaN 쇼트키 장벽 다이오드를 제안하였다. 애노드 내부에 트렌치를 설계하여 제안된 소자의 표면 애노드 컨택은 메탈 일 함수(metal work function)가 높은 Pt와 형성되며, 트렌치 애노드 컨택은 메탈 일 함수가 낮은 Au와 형성된다. 제안된 소자의 전기적 특성을 검증하기 위하여 2차원 수치 해석 시뮬레이션을 수행하였고, AlGaN/GaN 혜테로 접합 구조 위에 제작 및 측정하였다. 제안된 소자는 복잡한 공정 추가 없이 제작되며 $100A/cm^2$에서의 순방향 전압 강하는 0.73V로 기존 소자의 1.25V보다 우수한 특성을 보였다. 제안된 소자의 온 저항은 $1.58m{\Omega}cm^2$로 기존 소자의 온 저항 $8.20m{\Omega}cm^2$ 보다 낮은 장점을 가진다.

  • PDF

Study on the characteristics of low loss 4H-SiC LDIMOSFET implemented on semi-insulating substrate (반절연 기판을 이용한 저손실 4H-SiC LDIMOSFET의 동작 특성 연구)

  • Kim, Hyoung-Woo;Kim, Ki-Hyun;Lee, Kyoung-Ho;Kim, Min-Sung;Seo, Kil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1143-1144
    • /
    • 2015
  • 반절연 4H-SiC 기판을 이용한 LDIMOSFET에 대해 전류 통전 영역의 길이에 따른 항복전압 및 순방향 특성을 분석하였다. 또한, 온도 변화에 따른 역방향 상태 및 벌크 트랩 유무에 따른 누설전류 특성을 분석하였다. 전류 통전 영역의 두께를 $0.2{\mu}m$로 고정시키고 농도를 $1{\times}10^{15}/cm^3{\sim}1{\times}10^{17}/cm^3$ 까지 변화하였을 때 $2{\times}10^{16}/cm^3$인 경우에 1710V로 가장 높은 항복전압을 나타내었으며, 농도가 $2{\times}10^{16}/cm^3$ 이상인 경우 항복전압은 감소하는 특성을 나타내었다. 제안한 소자의 순방향 특성에 대해서도 simulation을 통해 특성을 분석하였으며, 항복전압이 1710V인 경우 온 저항은 $0.351{\Omega}-cm^2$를 나타내었다. 또한 벌크 트랩이 있는 경우에 대해 온도 변화 및 전류 통전 영역의 길이 변화에 따른 역방향 바이어스 상태에서의 누설전류 특성 변화에 대해서도 분석하였다.

  • PDF

Analysis of the electrical characteristics of the novel IGBT with additional nMOS (새로운 구조의 nMOS 삽입형 IGBT의 전기적 특성 분석)

  • Shin, Samuell;Son, Jung-Man;Park, Tea-Ryoung;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.255-262
    • /
    • 2008
  • In this paper, we proposed the novel IGBT with an additional n-type MOS structure to achieve the improved trade-off between turn-off and on-state voltage drop(Vce(sat)). These low on-resistance and the fast switching characteristics of the proposed IGBT are caused by an enhanced electron current injection efficiency which is caused by additional n-type MOS structure. In the simulation result, the proposed IGBT has the lower on state voltage of 2.65V and the shorter turn-off time of 4.5us than those of the conventional IGBT(3.33V, 5us).

  • PDF