• Title/Summary/Keyword: 순간온도 프로브

Search Result 10, Processing Time 0.017 seconds

Study on the Heat Flux Using Instantaneous Temperature as Height of Probe in the Combustion Chamber (연손실 순간온도 측저에 있어서 돌출높이에 따른 실험적 연구)

  • 이치우;김지훈;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.395-402
    • /
    • 2001
  • The gasoline engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc, in the engine, Thine film instantaneous temperature measurement probe was made. And the manufactural method of probe was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured by this probe and the heat flux was obtained by Fourier analysis. The authors measured the wall temperature of combustion chamber and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on height of probe. For achieving this goal, the thin film instantaneous temperature probe was developed for analyzing the instantaneous surface wall temperature and unsteady heat flux on the constant volume combustion chamber.

  • PDF

Study on the Heat Flux Using Instantaneous Temperature in the Constant Volume Combustion Chamber (정적연소기에서 순간온도를 이용한 열유속에 관한 연구)

  • 이치우;김지훈;하종률;김시범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-111
    • /
    • 2001
  • In the present study, the internal combustion engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc in the engine. Thin film instantaneous temperature probe was made, and the measuring system was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured with this system and the heat flux was obtained by Fourier analysis. Maximum instantaneous temperatures were obtained after 55∼60ms from ignition and they increased as equivalence ratio and varied differently as the position of probe. Total heat loss during combustion time was affected by the equivalence ratio and differed widely as the position of probe.

  • PDF

Measurement and Analysis of Instantaneous Surface Temperature and Unsteady Heat Flux at Combustion Chamber of DOHC Gasoline Engine ; Cylinder Linder (DOHC 가솔린기관의 연소실 벽표면순간온도 및 비정상 열유속 측정 및 해석(제3보 : 실린더 라이너에 관한 연구))

  • 위신환;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • Instantaneous temperature probes were manufactured by pressing method. By using these probes, the instantaneous surface temperature and unsteady heat flux in the cylinder liner of DOHC engine were measured. The main results are as follows; ⅰ) the instantaneous surface temperature of cylinder liner are affected by the contact of piston ring as well as burning gas. ⅱ) the wall temperature of the siamese portion is much higher than other parts. ⅲ) it was shown that the rising trend of heat flux by burning gas are nearly limited to the 1/2-stroke distance from the top of cylinder liner.

  • PDF

A Study on the Temperature Behavior on Impinging Plate of Diesel Spray with Ultra High Pressure (극초고압 디젤분무의 충돌면 온도거동에 관한 연구)

  • Lee Jong Tai;Jeong Dae Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.402-408
    • /
    • 2005
  • The instantaneous temperature behaviors on impinging plate in case of ultra high pressure have been measured and analyzed by using the instantaneous temperature probe and ultra high pressure injection equipment. The temperature drop was largest at P1 which is center of impinging spray and decreased with propagation of spray to the radius direction. The temperature drop was bigger in case of higher temperature of impinging plate. The temperature drop decreased with increase of injection pressure. But decreasing rate of temperature drop was slight over 2,500 bars. Therefore, it was predicted that the fuel evaporation versus the increase of injection pressure was maximum at around 2,500 bars.

A measurement of piston surface temperature by using instantaneous temperature measuring probe (순간온도 계측 프로브를 사용한 피스턴 표면 온도측정)

  • 이성열;이영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-66
    • /
    • 1990
  • In order to measure the piston surface temperature and heat flux, autors have developed the measuring system with an instantaneous temperature probe. Such the instantaneous temperature probes were embodied into the top of piston for measurement and L-link system, designed to fit the test engine, extracts the thermocouple wires from the piston outside of engine employing a mechanical linkage. Then the instantaneous surface temperature was measured to calculate the heat flux flowing into the top surface of piston in a spark ignition engine. As a result, the following phenomena have been obtained through the study. 1) It is found that the time response and durability of temperature probe with a thin film thickness 10um and mechanical linkage with thermocouple wire extraction is sufficient at this experiment. 2) For the quantitative effect of variation in engine speed, the temperature swing and heat flux on the top of piston increase with increasing the engine speed. 3) It is proved that the temperature swing and heat flux decrease with distance from spark plug.

  • PDF

Application of Temperature-compensated Resistivity Probe in the Field (온도보상형 전기저항 프로브의 현장 적용성 평가)

  • Jung, Soon-Hyuck;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.117-125
    • /
    • 2011
  • The practical use of the electrical resistivity, which can makes the acquirement of the high resolution data in specific area, is increased in order to obtain a reasonable data for a ground investigation. The objective of this study is development of TRPF(Temperature-compensated Resistivity Probe for Field test), and an application in the field test for obtaining a reliable electrical resistivity value about considering the temperature effects. Temperature sensor is attached at 15mm, 30mm, 90mm below from the cone tip in consideration with the results of temperature transient process of cone probe and safety, and the angle of cone tip is $60^{\circ}$ for geometrical reason and minimizing the disturbance during the penetration test. Diameter of the cone probe is equally 35.7mm and penetration rate is 2 cm/sec for a comparison with standard cones such as CPT and SPT, and others. The temperature change is instantly observed around $4^{\circ}C$ when touching the ground, and the comparing results among the other cones indicates that the temperature compensation should be conducted in the ground survey using the electrical resistivity. This study shows that the necessity of temperature effects compensation during penetration test through the development and field verification of TRPF (Temperature-compensated Resistivity Probe for Field test).

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

A Study on the Responsibility of Thin film instantaneous surface temperature probe of a Dual-pipe structure (이중관 구조 박막형 순간온도 프로브의 응답성에 관한 연구)

  • Choi, Seok-Ryeol;Park, Kyoung-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.237-242
    • /
    • 2003
  • The measurement study of instantaneous temperature at combustion chamber wall and the temperature of combustion gas has been under lots of research and development to conclude the temperature process in internal combustion engine for combustion characteristics analysis. The measurement with fast responsibility should be used for temperature measurement inside combustion chamber wall since temperature of wall changes, due to the various gas temperature, irregularly during the combustion. Therefore, thin film instantaneous surface temperature probe, which characterizes the fastest and the most accurate responsibility among contact typed temperature measurement, was used for the experiments. This new thin film instantaneous surface temperature probe improved the problems of noise and durability. The optimal coating thickness of thin film instantaneous surface temperature probe was proven to be $10{\mu}m$ for the best responsibility and durability. It also allowed the stable temperature measurement be taken up to $1,200^{\circ}C$ and proven to be read possibly from the combustion chamber wall.

  • PDF

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.