• Title/Summary/Keyword: 순간선형하중

Search Result 15, Processing Time 0.032 seconds

Dynamic Responses on Semi-Infinite Space Due to Transient Line Source in Orthotropic Media (선형하중에 의한 직교이방성 매체의 반구계에서 동적 응답 특성)

    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.974-980
    • /
    • 1998
  • The analysis of dynamic responses are carried out on several orthotropic systems due to transient line source. These include infinite and semi-infinite spaces. The media possess orthotropic or higher symmetry. The lode is in the form of a normal stress acting with parallel to symmetry axis on the plane of symmetry within the materials. The results are first derived for responses of infinite media due to a harmonic line source. Subsequently the results for semi-infinite are derived by using superposition of the solution in the infinite medium together with a scattered solution from the boundaries. The sum of both solutions has to satisfy stress free boundary conditions thereby leading to the complete solutions. Explicit splutions for the displacements due to transient line loads are then obtaind by using Cargniard-DeHoop contour.

  • PDF

Blast Analysis for RC Structures using Cluster Parallel Algorithm (Cluster Parallel Algorithm을 이용한 RC 구조물 폭발해석)

  • Park, Jae-Won;Yun, Sung-Hwan;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.660-663
    • /
    • 2011
  • 폭발하중은 매우 짧은 시간 내에 순간적인 높은 압력으로 발생된다. 따라서 폭발하중을 받는 구조물은 매우 복잡한 순간 동역학적 손상 거동을 나타낸다. 이러한 외부 하중에 대한 실험적 연구는 큰 비용, 시설, 그리고 군사적 보안 문제가 요구되기 때문에, 고성능 컴퓨팅 기술을 이용한 수치적 기법을 통해 구조물의 동적 비선형 해석을 수행하였다. 수치해석의 정확성을 높이기 위해 폭풍파와 같은 대기전파의 경우 Euler 기법, 콘크리트 재료의 경우 Lagrange 기법을 적용한 복합적 수치해석 (multi-solver coupling) 기법이 적용되었다. 제안된 수치해석 기법은 explicit 유한요소해석 프로그램인 AUTODYN을 이용하여 수행되었다. 그리고 클러스터 (cluster) 내 병렬 알고리즘 (parallel algorithm)을 이용하여 수치해석의 효율성을 높였다. RC 구조물의 수치해석 결과, 기존 실험 결과와 비교하여 잘 일치되었다. 또한 영역분할 개수가 증가할수록 수행시간은 감소되었고 Speed-up과 효율성은 높아졌다.

  • PDF

Linear and Nonlinear Stability Analysis of Shells Using Degenerated Isoparametric Elements (등매개(等媒介) 변수요소(變數要素)를 이용한 쉘의 선형(線形) 및 비선형(非線形) 안정해석(安定解析))

  • Lee, Nam Ho;Choi, Chang Koan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 1987
  • The paper describes the analysis of large displacement problems including instability phenomena. The element used in this is a degenerated isoparametric shell element with eight nodes. Total Lagrangian formulation has been adopted in this study using Newton-Raphson iteration method with incremental load. The linear stability analyses performed usually for the initial position can be repeated at several advanced fundamental states on the non-linear buckling path. Thus a current estimate of the failure load is given. The numerical examples of a cylindrical panel under uniform load, simply supported plate under axial load, and clamped plate under uniform load are carried out. The examples applying degenerated isoparametric elements to bifurcation buckling and nonlinear collapse problems are also performed.

  • PDF

포항분지 제3기 이암의 크리프 특성

  • 김광식;김교원;정자혜
    • Proceedings of the KSEG Conference
    • /
    • 2001.03a
    • /
    • pp.3-14
    • /
    • 2001
  • 암석은 외력하에서 탄성 및 점탄성적 변형거동을 보인다. 크리프 특성은 일정하중하에서 시간에 대한 암석의 변형으로 장기적인 지반거동을 예측할 수 있는 중요한 요소이며 암석의 점탄성적 성질을 반영한다. 포항지역에 분포하는 미고결 퇴적암인 이암을 대상으로 암석의 기본적인 물성, 역학적 특성 및 크리프 시험을 실시하였다. 일축압축강도의 40-70% 응력수준에서 순간탄성변형률은 하중의 증가에 대하여 선형적인 관계를 보였으며, 일차 크리프변형률은 시간경과에 대하여 로그함수로 적절히 설명되었다. 일차 크리프에서 이차 크리프로 진행하는 과정을 살피기 위하여 약 5일 이상의 시간이 필요하였으며 최종 크리프 변형에 의한 파괴시의 변형률은 약 0.01로 밝혀졌다.

  • PDF

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF

Damage Detection for Bridge Pier System Using filbert-Huang Transom Technique (Hilbert-Huang변환을 이용한 교각시스템의 손상위치 추정기법)

  • 윤정방;심성한;장신애
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.159-168
    • /
    • 2002
  • A recently developed filbert-Huang transform (HHT) technique is applied to detect damage locations of bridge structures. The HHT may be used to identify the locations of damages which exhibit nonlinear and nonstationary behavior, since the HHT can show the instantaneous frequency characteristics of the signal. A series of numerical simulations were conducted for bridge pier systems with damages under a controlled load with sweeping frequency. The results of the numerical simulation study indicate that the HHT method can reasonably identify damage locations using a limited number of acceleration sensors under severe measurement noise condition.

  • PDF

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials (복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

  • PDF

Effects of Moving Dynamic Vehicle Loads on Flexible Pavement Response (차량의 이동하중과 하중형태가 연성 포장의 거동 특성에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok;Nam, Young-Ho;Im, Jong-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • The most important elements in flexible pavement design criteria are stress and strain distributions. To obtain reasonable stress and strain distributions in pavements, moving wheel loads must be applied to analyze the pavement responses. In this study, finite element analysis was used to identify the three-dimensional states using the vehicle load into a constant-position / time-variable load (25, 50 and 80km/hr). In an elastic system, the strain is the same in both longitudinal and transverse directions under a single wheel. However, the same is not necessary in a viscoelastic system. Test results showed that the maximum values between transverse and longitudinal strains the bottom of asphalt concrete base layers under 25km/hr were were about 40 percent.

Study on Structural Strength of Mark III type LNG Cargo Containment System by Idealized Triangular Impulse Load (MarkIII LNG 방열 시스템의 강도평가를 위한 삼각형 충격 하중에 대한 구조응답에 대한 연구)

  • Hwang, Se Yun;Kim, Sung Chan;Lee, Jang Hyun;Nho, In Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.615-624
    • /
    • 2014
  • It has been well known the sloshing pressure has complex shape and various patterns. The pattern of sloshing pressure is variously characterized by the pressure amplitude, duration time and skewness. The structural response induced by the sloshing pressure is also affected by the pattern of sloshing pressure and the type of structural members. In order to understand the structural response by the perspective view of categorized pattern, it is more efficient to make simple sloshing pressure pattern than to reflect the complex pressure history. In this study, the sloshing pressures obtained by the small scale model test are simplified with respect to their duration and skewness. Dynamic analyses of Mark-III LNG CCS are then parametrically performed with the consideration of various types of sloshing impact. Meanwhile, the failure pressures given the duration and skewness are investigated after parametric calculations are conducted to investigate the effect of pressure parameters on the structural response.