• Title/Summary/Keyword: 수화생성물

Search Result 225, Processing Time 0.025 seconds

Microscopic Influence of Temperature on Carbonation for Marine Concrete Structure (항만콘크리트 구조물의 탄산화에 미치는 온도의 미세구조적 영향)

  • Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.272-278
    • /
    • 2010
  • Some recent researches reported that high temperature rising decreases the carbonation depth of concrete, which is contrary to the previous research results. Carbonation has been known as a reaction between calcium hydroxide and carbon dioxide. But a few researches showed that the other cement hydrates as well as calcium hydroxide react with carbon dioxide. This paper investigates the influence of temperature on carbonation and the variation of $Ca(OH)_2$ and $CaCO_3$ by carbonation. In order to estimate the carbonation depth and the quantities of reactant and product of carbonation reaction, phenolphthalein testing and thermagravimetric analyzer test were conducted. The measurement of carbonation depth with temperature showed that the temperature increase from $20^{\circ}C$ to $30^{\circ}C$C in carbonation environment makes the carbonation depth larger, but the increase from $30^{\circ}C$ to $40^{\circ}C$ has a small influence on the carbonation depth. Comparing calcium hydroxide and calcium carbonate with temperature, the quantity of $CaCO_3$ of specimen carbonated at $30^{\circ}C$ is greater than that of specimen carbonated at $40^{\circ}C$ and the quantity of $Ca(OH)_2$ of specimen carbonated at $30^{\circ}C$ is similar to that of specimen carbonated at $40^{\circ}C$. This observation shows that there is the optimum temperature increasing carbonation depth and the optimum temperature is close to $30^{\circ}C$.

Evaluation of Primary Coolant pH Operation Methods for the Domestic PWRs (국내 PWR의 일차냉각재 pH 운전방법의 평가)

  • Paek, Seung-Woo;Na, Jung-Won;Kim, Yong-Eak;Bae, Jae-Heum
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.52-62
    • /
    • 1992
  • Radioactive nuclides deposited on out-of-core surface after the radiation in the core by the transport of corrosion products (CRUD) through the primary coolant system in PWR which is the major plant type in Korea, are leading sources of radiation exposure to plant maintenance personnel. Thus, the optimal chemistry operation method is required for the reduction of radiation exposure by the corrosion products. This study analysed the actual water chemistry operation data of four operating domestic PWRs. And in order to evaluate the coolant chemistry operation data, a computer code which can calculate the activity buildup in the various chemistry conditions of PWR coolant was employed. Through the analysis of comparison between the activity buildup of actual water chemistry operation mode and that of assumed Elevated Li operation mode calculated by the computer code, it was found that the out-of core radioactivity can be reduced by diminishing the deposition of corrosion products on the core in case that the Elevated Li operation mode is applied to the coolant chemistry operation of PWR. And the higher coolant pH operation was shown to have the advantage of the reduction of out-of-core activity buildup if the integrity of system structural materials and fuel cladding is guaranteed.

  • PDF

Hydrolysis of Aluminum Nitride Powder (AlN 분말의 가수분해 특성)

  • 최상욱;정홍식;황진명
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.79-87
    • /
    • 1994
  • Aluminum nitride was hydrolyzed in contact with water, evolving the reaction heat of 172 cal/g within 12 hours to form alumina trihydrates. At 4$0^{\circ}C$ >, amorphous alumina hydrate was easily produced by the spontaneous breaks of AlN particle at the beginning of the hydrolysis process, while bayerite was formed by the dissolution-recrystallization processes of amorphous alumina hydrate at the temperature between 4$0^{\circ}C$ and 6$0^{\circ}C$, and pseudo-boehmite was generated on the surface of AlN particle by the condensation process of the corresponding phase at 6$0^{\circ}C$ <. The longer the hydrolysis timje or the higher the value of pH in solution, the more the bayerite phase was produced. However, pseudo-boehmite was easily generated under the following favorable conditions; when the hydrolysis reaction occured rapidly at the beginning and when the absorption of OH radical on the surface of AlN particle was disturbed by ethyl alcohol in a solution. However, aluminum nitride was hardly hydrolyzed in a solution of pH 2.0.

  • PDF

Experimental Study on the Early Strength Development Mechanism of Cement Paste Using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 조기강도 발현 메커니즘에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2014
  • The purpose of study is to analyze mechanism with early high portland cement and hardening accelerator. As the result, it was concluded that hardening accelerator makes accelerates appearance of $Ca(OH)_2$ through experiment using TG-DTA when it hydrates with cement. On the result of compressive strength, as increasing the amount of hardening accelerator used, early compressive strength was improved. Also, as a result of hydration heat, hardening accelerator accelerates hydration of $C_3S$ that is cement's component. On the result of XRD's analyzation, hydration product for each age could be check and it was shown that as increasing the amount of hardening accelerator used, peak point of hydration product was recorded high. As the result of SEM, appearance of C-S-H was shown as the amount of $Ca(OH)_2$'s appearance and each age according to additive contents of hardening accelerator. Therefore hardening accelerator used on this study is effective on getting early compressive strength.

Self-Healing Property of Hardened Cement Paste (시멘트 페이스트 경화체의 self healing 특성)

  • Kim, Jae Young;Byun, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.297-304
    • /
    • 2008
  • It is well known that cracks in concrete decrease permeability and durability of concrete because cracks enhance the penetration of water or corrosive chemicals like as chlorides, carbon dioxides, sulfates and some others. But some of cracks in hardened cements may be sealed in case of contacting water. This phenomenon is called "self healing" and it has a close relation to hydration products newly formed on surfaces of cracks. Many studies on self healing in concretes commonly showed that CSH gel has been observed on crack surfaces. And some studies have reported that calcium hydroxides and ettringite were observed as well as CSH gel on crack surfaces. This study was carried out to investigate hydration products formed by self healing process and also examine the influence of waterproof admixture for concretes on self healing of cement. As a result of XRD, DSC, SEM and EDX analysis of crack surfaces, it was found that self healing of cement was related to CSH gel, calcium hydroxides and ettringite. And waterproof admixture increased fibrous (needle-like) hydration products which were in network form. It is estimated that such fibrous products are effective for self healing process of cement system.

가압 경수로(PWR)원전 CVCS 정화 탈염기의 $^{7}$ Li$_3$ 회수 운전 방안 운전 방안

  • 성기방
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.392-397
    • /
    • 1998
  • PWR 원전의 냉각재 화학 및 체적제어 계통(CVCS) 정화 탈염기는 핵연료에서 방출된 핵분열 생성물질과 방사성 부식생성물을 제거하여 계통 내 방사능 준위를 낮추고, 부식을 유발하는 불순물을 제거하여 계통의 건전성을 유지하며, pH 조절제인 리튬($^{7}$ Li$_3$)의 농도조절을 통해 냉각계 수화학 환경을 최적으로 유지시킨다. 이를 위해 CVCS에는 정화용 혼상 탈염기와 $^{7}$ Li$_3$ 조절용 양이온 탈염기가 설치되었으며, 각각의 탈염기는 독립적인 기능을 수행한다. 이는 원전 운전 중 중성자와 붕소($^{10}$ B$_{5}$ )의 핵반응으로 생성된 $^{7}$ Li$_3$3 의 회수가 불가능하기 때문에 정화 탈염기에는 값비싼 $^{7}$ Li$_3$ 포화형 수지를 충전하여야 한다. Pn 원전은 연료교체를 위해 주기적으로 연료계장전 기간을 갖으며 이에 따라 원자로 기동 수화학, 운전중 B/Li 농도조절에 의한 pH 화학, 원자로 정지화학 등의 주기적인 냉각재 수화학 관리를 해오고 있다. 본 연구에서는 효율적인 정화탈염기의 운영방안을 제시함으로 운전중 붕소의 핵분열로 생성되는 $^{7}$ Li$_3$ 의 회수가 가능하고 수지의 사용량 절감으로 수지폐기물 발생량 저감화를 이를 수 있을 것으로 기대된다.

  • PDF

Study on the Characteristic of Non Cement Matrix using Blast Furnace Slag (고로슬래그를 사용한 무시멘트 경화체의 특성 연구)

  • Park, Sun-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.101-102
    • /
    • 2013
  • 시멘트 및 건설산업은 그 제조과정에서 다량의 이산화탄소를 배출하기 때문에 지구온난화 문제를 가속화시키고 있는 것으로 알려져 있다. 따라서 이러한 시멘트를 대체할 수 있는 재료 개발에 많은 연구가 이루어지고 있으며, 철강산업 부산물인 고로슬래그 미분말은 그 중 하나의 재료라 할 수 있다. 고로슬래그 미분말은 물과 직접 반응하지 않으나 알칼리 환경하에서는 물과 반응하여 CSH 수화물을 생성하게 된다. 본 연구에서는 알칼리 자극제를 첨가한 경우의 무시멘트 경화체에 대한 강도 및 수화 특성에 대하여 분석하고자 하였다.

  • PDF

일체형원자로 SMART의 수화학 설계 특성

  • 최병선;김주평;조봉현;이영진;이두정
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.411-416
    • /
    • 1998
  • 출력운전 동안 원자로 냉각재의 정화 없이 운전하는 SMART원자로의 수화학 설계 요건을 정립하기 위하여 핵연료 피복관 및 계통재질의 부식을 최소화하고 부식 생성물의 방사화에 의한 방사선 준위의 상승을 억제하기 위한 수화학 운전 변수에 대한 정성적인 분석을 시도하였다. 원자로냉각재 의 pH 제어 계통을 구성하는 재질의 부식에 따른 건전성, 부식생성물의 거동 및 원자로 냉각재의 방사선 준위 측면에서 수화학 설계 요건이 적절한지의 여부를 살펴보았다 분석 결과, 원자로냉각재의 pH 제어는 암모니아를 이용하므로 높은 pH(= 9.5∼10.6)에서 운전이 가능하며, 계통재질의 부식을 최소화하며 방사선 준위의 상승을 억제할 수 있었다. 또한 SMART 증기발생기 튜브에 사용된 titanium 합금은 주어진 운전 조건하에서 Inconel-600보다 내 부식성이 매우(약 12 배) 우수하였다.

  • PDF