• Title/Summary/Keyword: 수화물

Search Result 802, Processing Time 0.026 seconds

A Study on the Thermal Crack Control of the In-Ground LNG Storage Tank as Super Massive Structures (지하식 LNG 저장탱크 구조물의 온도균열 제어에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.773-780
    • /
    • 2011
  • In this study, thermal stress analysis are carried out considering material properties, curing condition, ambient temperature, and casting date of the mass concrete placed in bottom slab and side wall of the in-ground type LNG tank as a super massive structure. Also, based on the numerical results, cracking possibility is predicted and counter measures to prevent the cracking are proposed. For the tasks, two optimum mix proportions were selected. From the results of the thermal stress analysis, the through crack index of 1.2 was satisfied for separately caste concrete lots except for the bottom slab caste in 2 separate sequences. For the double caste bottom slab, it is necessary introduce counter measures such as pre-cooling prior to the site construction. Also, another crack preventive measure is to lower the initial casting temperature by $25^{\circ}C$ or less to satisfy 1.2 through crack index criterion. In the $1^{st}$ and $2^{nd}$ caste bottom slab, the surface crack index was over 1.2. Therefore, the surface cracks can be controlled by implementing the curing conditions proposed in this study. Since the side wall's surface crack index was over 1.0, it is safe to assume that the counter preventive measures can control width and number of cracks.

The Experimental Study on The Compressive Strength of Mortar Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abraser (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 모르타르 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Han, Sang-Il;Kim, Ha-Suk;Jun, Myong-Hun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.485-488
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that mortar using recycled fine aggregate containing calcined gypsum has lowest compressive strength. It seems that low compressive strength is closely associated with the expansion of the specimen by excessive formation of ettringite.

  • PDF

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Time Evolution of Material Parameters in Durability Design of Marin Concrete (해양콘크리트의 내구성 설계를 위한 재료 매개변수의 시간단계별 해석)

  • Yoon, In-Seok;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1077-1080
    • /
    • 2008
  • Material parameters such as surface chloride content, water permeability coefficient, chloride diffusivity and critical chloride content are a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Over the past few decades, a considerable number of studies on the durability design for marine concrete structures have been carried out. However, the results are different to each other. In order to establish a consistent durability design system of concrete, it is a precondition to define material parameters, which affect deterioration of concrete due to chloride penetration. Such parameters are surface chloride content, chloride diffusivity, and critical chloride content. Usually these parameters are assumed as temporary constant values or obtained from the experimental results for short term. However, it is necessary to define these parameters reasonably, because these significantly influence the calculation of service life of concrete. In this paper, it is introduced to define material parameters of concrete for chloride diffusion, such as surface chloride content $[Cl]_s$, water permeability coefficient K, chloride diffusivity $D_{Cl}$, critical chloride content $[Cl]_{cr}$. These are expressed as time function considering hydration evolution of hardened cement paste. The definition of the material parameters is a prerequisite to simulate chloride penetration into concrete as time elapsed.

  • PDF

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Variations of Complex Permittivity due to Water Content and Heavy Metal Contamination (함수비와 중금속 오염도에 따른 유전상수의 변화)

  • Oh Myoun-Hak;Kim Yong-Sung;Yoo Dong-Ju;Park Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.231-241
    • /
    • 2005
  • Laboratory experiments were performed to examine the effects of water content and to see if permittivity had sufficient sensitivity to identify subsurface contamination. Both real and imaginary permittivities of unsaturated sand were strongly governed by the volumetric water content. Especially, a linear relationship between real permittivity and volumetric water content was derived at high frequencies (MHz ranges). Heavy metals in pore fluid result in significant increases in the effective imaginary permittivity, due to ionic conduction, but decreases in the real permittivity arises due to the decreased orientational polarization of water molecules caused by hydration of ions. Clear increase in the effective imaginary permittivity with heavy metal concentration was found to be valuable in the application of electrical methods for detecting heavy metals in the subsurface. However, because the permittivity is primarily dependent on the volumetric water content of soil, pre-evaluation on the volumetric water content is required.

Synthesis of Single Crystalline Analcime and Its Single-crystal Structure, |Na0.94(H2O)|[Si2.06Al0.94O6]-ANA: Determination of Cation Sites, Water Positions, and Si/Al Ratios (결정성 아날심(|Na0.94(H2O)|[Si2.06Al0.94O6]-ANA)의 합성 및 단결정구조: 양이온 및 물 분자의 위치, Si/Al 비의 결정)

  • Seo, Sung-Man;Suh, Jeong-Min;Ko, Seong-Oon;Lim, Woo-Taik
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.570-574
    • /
    • 2011
  • Large colorless single crystals of analcime with diameters up to 0.20 mm have been synthesized from gels with the composition of $3.00SiO_2$ : $1.50NaAlO_2$ : 8.02NaOH : $454H_2O$ : 5.00TEA. The fully $Na^+$-exchanged analcime have been prepared with aqueous 0.1 M NaCl (pH adjusted from 6 to 11 by dropwise addition of NaOH). The single-crystal structure of hydrated $|Na_{0.94}(H_2O)|[Si_{2.06}Al_{0.94}O_6]$-ANA per unit cell, a=13.703(3) ${\AA}$, has been determined by single-crystal X-ray diffraction technique in the orthorhombic space group Ibca at 294 K. The structure was refined using all intenties to the final error indices (using only the 1,446 reflections for which $F_o$ > $4{\sigma}(F_o))R_1/wR_2$ = 0.054/0.143. About 15 $Na^+$ ions are located at three nonequivalent positions and octahedrally coordinated. The chemical composition is $Na_{0.94}(H_2O)Si_{2.06}Al_{0.94}O_6$. The Si/Al ratio of synthetic analcime is 2.19 determined by the occupations of cations, 14.79, in the single-crystal determination work.

Residual Stresses Analysis due to Volumetric Changes in Long-term Autogenous Expansive Concrete (장기팽창성 콘크리트의 체적변화에 의한 잔류응력 해석)

  • Cha, Soo-Won;Jang, Bong-Seok;Oh, Byung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.617-625
    • /
    • 2009
  • This study is devoted to the problems of thermal and autogenous expansion stresses in order to avoid cracking using chemically prestressing method. The chemical prestress can be induced by autogenous expansion characteristics of MgO concrete made in specific burning temperature. The volume change induced cracking has great influence on the long-term durability and serviceability. To evaluate risk of cracking, the computer programs for analysis of thermal and autogenous expansion stresses were developed. In these 3-D finite element procedures, long-term autogenous expansive deformation is modeled and its resultant stress is calculated and then verified by comparison with manual calculation results. In this study, the stress development is related to thermal and autogenous expansive deformation. Using the developed program, residual stresses of MgO concrete were compared and analysed in the example From the numerical results it is found that long-term, and temperature dependent expansive concrete with light-burnt MgO is most effective in controlling the risk of cracking of mass concrete because it has high temperature for long period. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and autogenous expansion stresses in mass concrete structures with lightly burnt MgO.

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.

Tests on Magnesium Phosphate Composite Mortar Mixtures with Different Molar Ratios of MgO-to-KH2PO4 (MgO-KH2PO4 몰비 변화에 따른 마그네시아-인산염 모르타르의 배합실험)

  • Yoon, Hyun-Sub;Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2017
  • The objective of this study is to seek a reliable mixture proportion for magnesium potassium phosphate composite(MKPC) mortars with a near-neutral pH value (below 9.5) and a relatively good compressive strength exceeding 30MPa. The main parameter selected was the molar ratios($M_{mp}$) of $MgO-to-KH_2PO_4$ which varied from 30.4 to 3.4. The setting time of the MKPC mortars tended to shorten with a decrease in $M_{mp}$ value. With regard to the strength development ratio normalized by the 28-day strength, the ranges measured in the mortars with an $M_{mp}$ below 7.9 were 50~61% at 1 day and 60~73% at 3 days, indicating a highly rapid early-strength development. With a decrease in $M_{mp}$, the formation of struvite-K crystal identified as a primary hydration product increased, which led to the decrease of the macro-capillary pores in micro-structures. For achieving the targeted requirements for pH value and compressive strength, the $M_{mp}$ needs to be selected as below 5.1.