• Title/Summary/Keyword: 수행능력

Search Result 5,907, Processing Time 0.039 seconds

Proximal Policy Optimization Reinforcement Learning based Optimal Path Planning Study of Surion Agent against Enemy Air Defense Threats (근접 정책 최적화 기반의 적 대공 방어 위협하 수리온 에이전트의 최적 기동경로 도출 연구)

  • Jae-Hwan Kim;Jong-Hwan Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • The Korean Helicopter Development Program has successfully introduced the Surion helicopter, a versatile multi-domain operational aircraft that replaces the aging UH-1 and 500MD helicopters. Specifically designed for maneuverability, the Surion plays a crucial role in low-altitude tactical maneuvers for personnel transportation and specific missions, emphasizing the helicopter's survivability. Despite the significance of its low-altitude tactical maneuver capability, there is a notable gap in research focusing on multi-mission tactical maneuvers that consider the risk factors associated with deploying the Surion in the presence of enemy air defenses. This study addresses this gap by exploring a method to enhance the Surion's low-altitude maneuvering paths, incorporating information about enemy air defenses. Leveraging the Proximal Policy Optimization (PPO) algorithm, a reinforcement learning-based approach, the research aims to optimize the helicopter's path planning. Visualized experiments were conducted using a Surion model implemented in the Unity environment and ML-Agents library. The proposed method resulted in a rapid and stable policy convergence for generating optimal maneuvering paths for the Surion. The experiments, based on two key criteria, "operation time" and "minimum damage," revealed distinct optimal paths. This divergence suggests the potential for effective tactical maneuvers in low-altitude situations, considering the risk factors associated with enemy air defenses. Importantly, the Surion's capability for remote control in all directions enhances its adaptability in complex operational environments.

Deep Learning-based UWB Distance Measurement for Wireless Power Transfer of Autonomous Vehicles in Indoor Environment (실내환경에서의 자율주행차 무선 전력 전송을 위한 딥러닝 기반 UWB 거리 측정)

  • Hye-Jung Kim;Yong-ju Park;Seung-Jae Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • As the self-driving car market continues to grow, the need for charging infrastructure is growing. However, in the case of a wireless charging system, stability issues are being raised because it requires a large amount of power compared with conventional wired charging. SAE J2954 is a standard for building autonomous vehicle wireless charging infrastructure, and the standard defines a communication method between a vehicle and a power transmission system. SAE J2954 recommends using physical media such as Wi-Fi, Bluetooth, and UWB as a wireless charging communication method for autonomous vehicles to enable communication between the vehicle and the charging pad. In particular, UWB is a suitable solution for indoor and outdoor charging environments because it exhibits robust communication capabilities in indoor environments and is not sensitive to interference. In this standard, the process for building a wireless power transmission system is divided into several stages from the start to the completion of charging. In this study, UWB technology is used as a means of fine alignment, a process in the wireless power transmission system. To determine the applicability to an actual autonomous vehicle wireless power transmission system, experiments were conducted based on distance, and the distance information was collected from UWB. To improve the accuracy of the distance data obtained from UWB, we propose a Single Model and Multi Model that apply machine learning and deep learning techniques to the collected data through a three-step preprocessing process.

Effects of Feeding with Fiber Diets on Growth Performance in Weanling Piglets (사료 내 섬유소의 첨가가 자돈의 성장 성적에 미치는 영향)

  • Seong Min Koo;Esther Lee;Su Hyup Lee;Jae Cheol Jang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.60-66
    • /
    • 2024
  • This study was undertaken to evaluate the effect of feeding with fiber diets on growth performance in weaned piglets. A total of 240 pigs with an averge weight of 8.69±0.45 kg at 28±2 days of age were allocated into a randomized complete block design (RCBD) with a total of 6 treatments and 5 replications per treatment in the pig barn. The experimental treatments were as follows: 1) Negative control (NC: Basal diet), 2) Positive control (PC: Basal diet+antibiotic), 3) SBP2 (Basal diet+2% sugar beet pulp addition), 4) SBP8 (Basal diet+8%diet+8% sugar beet pulp addition), 5) OH2 (Basal diet+2% sugar beet pulp), and 6) OH8 (Basal diet+8% oat hull addition). The pigs were fed phase I diets for 2 weeks and phase II diets for 3 weeks, with the average daily gain (ADG) and average daily feed intake (ADFI) measured on days 14 and 35. During 2 week the growth performance of the PC treatment, with 0.1% antibiotic addition, showed a significant increase (P<0.05). In 0~5 weeks, the growth performance in the PC treatment was the highest. Treatments with dietary fiber additions exhibited lower daily gains compared to the PC treatment but were higher than the NC treatment. SBP8, with 8% sugar beet pulp addition, showed growth performance comparable to the PC treatment (P<0.05). Additionally, the 8% fiber addition level demonstrated significantly higher daily gains compared to the 2% addition level (P<0.05). The addition of fiber to pig diets resulted in lower growth performance compared to treatments with antibiotic additions. However, the pigs fed SBP8 showed growth performance equivalent to those in the PC treatment, suggesting the potential of sugar beet pulp as a substitute for antibiotics in pig feed. The growth attributed to sugar beet pulp addition in the feed is speculated to occur while the immature gut of the pigs is developing and due to the positive influence of sugar beet pulp's fiber source on the gut environment.

Research Trends in Neonatal Simulation Practice Education of Nursing Students (간호대학생의 신생아 시뮬레이션 실습교육 연구동향(2011년~2023년))

  • Sung Hee Choi;Sang Hee Kim;Sun Hui Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.215-224
    • /
    • 2024
  • The purpose of this study was to examine research trends related to neonatal simulation practice education of domestic nursing students. It was a descriptive research study. For literature collection, a total of 17 journals were selected as a result of a search using ('Newborn Simulation') AND ('Nursing Student' OR 'Nursing College Student' OR 'Student Nurse') in 6 domestic electronic databases. The research results showed that it started with 7 journals from 2011 to 2015 and decreased slightly to 5 journals from 2016 to 2020 and 5 journals from 2021 to 2023. The research design was mostly quantitative with a total of 16 journals(94%). Among them, there were 15 intervention journals(88%), 1 descriptive research journals(6%), and 1 mixed method journals(6%). The key topics in simulation practice were high-risk newborns with 9 journals(52%), respiratory distress syndrome in neonatal intensive care units appeared with 3 journals(18%), neonatal care with 3 journals(18%), normal newborn care with 1 journal(6%), and neonatal emergency airway care with 1 journals(6%). The main outcome variables were clinical performance, accounting for 5 journals(19.2%), followed by practice satisfaction 3 journals(11.5%). clinical competency and practice satisfaction were found to have significant positive effects. In conclusion, various research methods are required, such as expansion of nursing students' neonatal simulation practice education, repeated research, and qualitative research.

Characteristics of accurate token and all token diadochokinesis in patients with normal pressure hydrocephalus (정상압 수두증 환자와 정상 노인의 조음교대운동 수행력 비교)

  • Seong Hee Yoon;Ki-Su Park;Kyunghun Kang;Janghyeok Yoon;Ji-Wan Ha
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2024
  • Normal pressure hydrocephalus (NPH) is a condition wherein the cerebrospinal pressure in the brain is within the normal range, but the cerebrospinal fluid increases above the normal level, causing ventriculomegaly. In patients with NPH, the articulatory system exhibits reduced mobility and range, which may affect diadochokinesis (DDK) and speech intelligibility. In this study, we investigated the characteristics of DDK, including accurate-token DDK and all-token DDK including inaccurate tokens, in patients with NPH and healthy elderly adults (HE). We also examined the classification accuracy of DDK between the two groups. Finally, we investigated whether there was a correlation between speech intelligibility and DDKs in the NPH group. The results showed that NPH and HE groups differed significantly in both accurate-token DDK and all-token DDK, and their classification accuracy was relatively high. However, there was no correlation between speech intelligibility and DDK. The findings suggest that the DDK is a useful method for sensitively assessing speech motor performance in patients with NPH.

Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System (통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안)

  • Byeong-Cheon Yoo;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2024
  • In this dissertation, a we designed and implemented a patrol robot that integrates a thermal imaging camera, speed dome camera, PTZ camera, radar, lidar sensor, and smartphone. This robot has the ability to monitor and respond efficiently even in complex environments, and is especially designed to demonstrate high performance even at night or in low visibility conditions. An orbital movement system was selected for the robot's mobility, and a smartphone-based control system was developed for real-time data processing and decision-making. The combination of various sensors allows the robot to comprehensively perceive the environment and quickly detect hazards. Thermal imaging cameras are used for night surveillance, speed domes and PTZ cameras are used for wide-area monitoring, and radar and LIDAR are used for obstacle detection and avoidance. The smartphone-based control system provides a user-friendly interface. The proposed robot system can be used in various fields such as security, surveillance, and disaster response. Future research should include improving the robot's autonomous patrol algorithm, developing a multi-robot collaboration system, and long-term testing in a real environment. This study is expected to contribute to the development of the field of intelligent surveillance robots.

Review of In-situ Installation of Buffer and Backfill and Their Water Saturation Management for a Deep Geological Disposal System of Spent Nuclear Fuel (국외 사례를 통한 사용후핵연료 심층처분시스템 완충재 및 뒤채움재의 현장시공 및 포화도 관리 기술 분석)

  • Ju-Won Yun;Won-Jin Cho;Hyung-Mok Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.104-126
    • /
    • 2024
  • Buffer and backfill play an essential role in isolating high-level radioactive waste and retard the migration of leaked radionuclides in deep geological disposal system. A bentonite mixture, which exhibits a swelling property, is considered for buffer and backfill materials, and excessive groundwater inflow from surrounding rock mass may affect stability and efficiency of their role as an engineered barrier. Therefore, stringent quality control as well as in-situ installation management and inflow water constrol for buffer and backfill are required to ensure the safety of deep disposal facilities. In this study, we analyzed the design requirements of buffer and backfill by examining various laboratory tests and a field study of the Steel Tunnel Test at the Äspö Hard Rock Laboratory in Sweden. We introduced how to control the quality of buffer and backfill construction in-field, and also presented how to handle excessive groundwater inflow into disposal caverns, validating the groundwater retention capacity of bentonite pellets and the effectiveness of geotexile use.

Assessment of wetland ecosystem services for ecological management in the border area of the Han River Estuary (한강하구 접경지역 습지 생태계 서비스 평가를 통한 생태적 관리 방안 분석)

  • Hyun-Ah Choi;Donguk Han;Woo-Kyun Lee;Cholho Song
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.683-696
    • /
    • 2023
  • The conservation of wetland ecosystems has a significant role in climate change. Notably, the Han River Protected Area, including the Siam-ri wetland and Janghang wetland, provides high biodiversity value. Thus, it is necessary to comprehensively evaluate the function and value of wetland ecosystems. This study evaluated the ecosystem services of Siam-ri and Janghang Wetlands located in the Han River Protected Area using the Rapid Assessment Wetland Ecosystem Services approach, a function-oriented ecosystem analysis. The results were calculated using the Ecosystem Services Index formula to analyze wetland ecosystem services. We also assessed the key ecosystem services based on a focus group interview. We identified that the supporting and cultural services index scores were relatively high in the study area. The results can provide helpful information for sustainable wetland conservation, conservation planning as primary data, and raising awareness for the Han River Protected Area.

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm (강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정)

  • Sang-Soo Ma;Tae-Yun Kwon;Won-Hong Lee;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.

Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution (요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법)

  • Ji Won Woo;Yang Gon Kim;Jung Woo An;Sang Yun Park;Gyeong Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.400-407
    • /
    • 2024
  • The role of unmanned aerial vehicles (UAVs) in modern warfare is increasingly significant, making their capacity for autonomous missions essential. Accordingly, autonomous target detection/identification based on captured images is crucial, yet the effectiveness of AI models depends on image sharpness. Therefore, this study describes how to determine the field of view (FOV) of the camera and the flight position of the UAV considering the required spatial resolution. Firstly, the calculation of the size of the acquisition area is discussed in relation to the relative position of the UAV and the FOV of the camera. Through this, this paper first calculates the area that can satisfy the spatial resolution and then calculates the relative position of the UAV and the FOV of the camera that can satisfy it. Furthermore, this paper propose a method for calculating the effective range of the UAV's position that can satisfy the required spatial resolution, centred on the coordinate to be photographed. This is then processed into a tabular format, which can be used for mission planning.