• Title/Summary/Keyword: 수평 하중

Search Result 765, Processing Time 0.029 seconds

Lateral Behavior of Hybrid Composite Piles Using Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 수평거동 특성)

  • Park, No-Won;Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.133-143
    • /
    • 2018
  • Concrete filled steel tube (PCFT) piles, which compose PHC piles inside thin steel pipes, were developed to increase the flexural strength of the pile with respect to the horizontal load. In order to compare the flexural strength of PCFT pile with that of steel pipe pile, several flexural tests were performed on the PCFT and steel pipe piles with the same diameter and the P-M curves for both piles were constructed by the limit state design method. Four test piles were also installed and lateral pile load tests were performed to compare the lateral load capacities and lateral behaviors of the hybrid composite piles using PCFT piles and the existing piles such as HCP and steel pipe piles. The flexural test results showed that the flexural strength of PCFT piles was 18.7% higher than that of steel pipe piles with thickness of 12mm and the same diameter, and the mid-span deflection of piles was 50% lower than that of steel pipe piles at the same bending moment. From the P-M curves, it can be seen that the flexural strength of PCFT piles subjected to the vertical load is greater than that of steel pipe piles, but the flexural strength of PCFT piles subjected to the pullout load is lower than that of steel pipe piles. In addition, field pile load tests showed that the PCFT hybrid composite pile has 60.5% greater lateral load capacity than the HCP and 35.8% greater lateral load capacity than the steel pipe pile when the length of the upper pile in hybrid composite piles was the same.

Small Scaled Laboratory Test of Eco-Friendly Backfill Materials with Bottom Ash (바톰애쉬를 이용한 환경친화적 뒤채움재의 실내모형실험)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1889-1894
    • /
    • 2012
  • A small-scale chamber test laboratory for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Laboratory test which was simulated during construction stage was conducted. The vertical deflection of 4.43mm to 6.6mm, and the horizontal deflection of 5.49mm to 15.9 mm were measured during backfilling. In case of loading, the vertical deflection of 2.41mm to 8.69mm, and the horizontal deflection of 1.66mm to 2.53mm were measured. Its residual deflections were 1.40mm to 5.93mm for vertical and 1.66mm to 2.53mm for lateral. The vertical and horizontal deflecto of controlled low strength materials were smaller than that of sand backfill. Also, it was same trend for the measured surface settlement.

Evaluation on Structural Safety for Bearing seat according to Replacement of Bridge Bearing (교량받침 교체에 따른 보자리 구조 안전성 평가)

  • Choi, Jung-Youl;Lee, Hee-Kwang;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.753-760
    • /
    • 2020
  • In this study, the structural safety of the bearing support was analysed by applying the vertical load (bearing design load) and horizontal load (horizontal force generated during an earthquake) using a precise three-dimensional numerical model. The results of stress and displacement of newly-poured concrete and welded rebars were confirmed numerically. Numerical results show that the increase in the horizontal force and the height of the beam causes the concrete cracking and the stress increase of the rebar connections due to the increase of the stress at the new concrete interface. Therefore, it was analyzed that the increase in the height of bearing support is directly related to the horizontal force and it is necessary to apply the bearing support height appropriate for the bearing support capacity. It was proposed that a method of setting the height of the bearing support suitable for the bearing capacity and determining the reinforcement by presenting the guideline with the correlation between the horizontal force acting on the bearing support and its height.

Numerical Investigation on Combined Load Carrying Capacity and Consolidation Behavior of Suction Piles (석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Hong, Seung-Rok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.103-116
    • /
    • 2014
  • This paper presents the results of a numerical investigation on the load carrying capacity and consolidation behavior of suction piles. Three dimensional numerical models which reflect realistic ground conditions and installation procedures including the ground-suction pile interface were adopted to conduct a parametric study on variables such as the length-diameter ratio and the loading configurations, i.e, vertical, horizontal, and combined loads. The results indicated that the load carrying capacity of a suction pile can only be realistically obtained when the interface behavior between the suction pile and the ground is correctly modeled. Also carried out was the stress-pore pressure coupled analysis to investigate the consolidation behavior of the suction pile after the application of a vertical loading. Based on the results, failure envelops and associated equations were developed, which can be used to estimate load carrying capacity of suction piles installed in similar conditions considered in this study. The results of consolidation analysis based on the stress-pore pressure coupled analysis indicate that no significant excess pore pressure and associated consolidation settlement occur for the loading configuration considered in part due to the load transfer mechanism of the suction pile.

Proposed Reduction Factor of Cyclic p-y Curves for Drilled Shafts in Weathered Soil (풍화토 지반에 근입된 현장타설말뚝의 Cyclic p-y 곡선의 감소계수 제안)

  • Kim, Byung-Chul;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.47-63
    • /
    • 2015
  • A fundamental study of drilled shafts subjected to lateral cyclic loading in weathered soil was carried out based on field tests and numerical analysis. The emphasis was given on quantifying the cyclic p-y curve function from lateral cyclic loading tests and three-dimensional finite element analysis. Lateral cyclic loading tests and three-dimensional finite element analysis were carried out to investigate the behavior of drilled shafts according to the direction of cyclic loading. Based on the field tests and numerical analysis, a modified lateral load transfer relationship and design chart with degradation factors were proposed by considering the characteristics of cyclic loading. It was found that the prediction by the proposed p-y curve function is in good agreement with the general trends observed by in-situ measurements, and it represents a practical improvement in the prediction of lateral displacement and bending moment distribution of drilled shafts subjected to cyclic loading.

Quality Assurance of a Large Foundation (대형기초의 품질관리)

  • Jung, Gyung-Ja;Kim, Hong-Jong;Jung, Jong-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.115-123
    • /
    • 2007
  • 설계 하중이 큰 대형 구조물의 기초로 많이 사용되는 현장타설말뚝은 현장에서 지반을 굴착하여 조립된 철근망을 삽입한 후, 콘크리트를 타설하여 제작되므로 복잡한 시공 과정과 현장의 특수한 지하수 및 지반 조건으로 인하여 현장타설말뚝의 내부에는 결함이 포함될 수 있다. 발생 가능한 대표적인 결함으로 연약한 말뚝 선단, 말뚝체 콘크리트의 품질 저하, 말뚝과 지반의 접촉 불량, 주 철근의 부식 등이 있으며, 이들 결함을 감지하기 위한 건전도 시험법으로 공대공초음파 검층, 충격반향시험, 충격응답시험, 감마-감마 검층법 등이 있다. 결함은 말뚝의 수평지지력을 감소시키며, 일반적으로 발생하는 비대칭단면 결함에 의한 응력 집중현상과 수평 하중에 의한 휨모멘트는 연직지지거동에 영향을 준다. 따라서 결함을 감지하고 평가하는 것이 현장타설말뚝의 품질관리에 있어 매우 중요하다.

  • PDF

Behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane (수평 불연속변 하부에 굴착한 얄은 심도의 2-Arch 터널의 거동)

  • Cheon, Eun-Sook;Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • In this study, the behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane was verified experimentally. The model tests were carried out by varying the overburden height and the location of the discontinuity plane. The model tests followed exactly the real 2-Arch tunnel construction stages. As a result, it is discovered that stress-transfer mechanism and loosening area around the 2-Arch tunnel depends on the overburden heights and the location of the discontinuity plane. And central pillar load is also dependent on overburden height, location of discontinuity plane and construction stages.

  • PDF

A Study on Quantitative Lateral Drift Control of Tall Steel Braced Frames subject to Horizontal Loads (수평하중을 받는 고층철골가새골조의 정량적인 횡변위제어에 관한 연구)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.397-406
    • /
    • 2000
  • This study presents an effective optimal technique to control quantitatively lateral drift for tall steel braced frames subject to horizontal loads. In this paper, the displacement sensitivity depending on behavior characteristics of steel braced frames is established, and also the approximation concept that has the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Especially, the commercially available standard steel sections are used for the discrete selection of member sizes. Three types of 12-story braced frames and a 30-story braced framework are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Standardization of Stiffness Test Method of Non-bearing Lightweight Wall for building (건축용 비내력 경량벽체의 정적 수평하중저항성 시험방법의 표준화)

  • Kim, Jin-Sik;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.185-186
    • /
    • 2015
  • The use of non-bearing lightweight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Lightweight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the stiffness (static horizontal load resistance) test method for lightweight walls by using the actual impact load obtained through the load analysis test conducted in the previous studies. The size of specimen was set up as height 2.4m and width 3.0m. Test apparatus and test methods were referred to BS 5234-2:1992. However, the loading level applied to the specimen was divided into 3 steps (3000N, 1000N, 500N) that can be applied selectively depending on the purpose of the wall. The deformation characteristics according to the same loading level were vary depending on the specimen's type, and the evaluation criteria for functional damage may vary depending on the material, method of construction, and purpose of wall. Therefore, we did not suggest unified evaluation criteria of the stiffness to the test results.

  • PDF

Experimental Study on the Characteristics of Steel Hysteretic Dampers with E-Shape Elements (E-Shape 강재이력댐퍼의 거동 분석)

  • 김인배;강형택;이민구;서주원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.457-464
    • /
    • 2003
  • 최근 교량의 건설에 있어서 내진설계가 주요문제로 부각되면서, 구조물의 진동응답을 제어 하는 갖가지 형태의 진동제어 기법이 적용되고 있다. LRB(Lead Rebbe. Bearing), LUD(Lock Up Device)등 다양한 지진격리장치가 설계에 적용되고 있으며 특히, 설계변경 .내진보수보강과 같이 제약 조건이 있는 상황에서 유용한 면진방법으로 사용되고 있다. 이러한 지진격리장치는 기본적인 설계특성인 수평강성, 감쇠성능에 대한 검증을 필요로 한다. 특히, 지진과 같은 동적하중에 대하여 하중속도, 수직력, 변형률 등에 대한 의존성과 내구성의 검토가 필요하며 유사장치에 대하여 검증실험기준의 정립이 진행 중에 있다. 강재이력댐퍼인 E-Shape 댐퍼는 지진격리장치로서 교각의 고정단에 교좌장치로 설치되어 상시에는 탄성영역 내에서 거동하는 고정단의 역할을 하다가, 지진발생시에는 E-Shape형태의 강재댐퍼가 소성변형을 통한 이력거동으로 에너지 소산기능을 가진 교좌장치이다. 최근 LRB에 대하여는 다양한 특성실험이 수행되고 있으나 상대적으로 강재이력댐퍼에 대하여는 이러한 검증실험이 수반되지 않고 사용되고 있다. 본 실험연구에서는 E-Shape 강재이력댐퍼에 대하여 연직하중, 수평변형률, 수평속도에 패한 동적특성을 평가함으로서 강재이력댐퍼를 이용한 지진격리설계의 타당성과 면진성능을 평가해 보았다.

  • PDF