• Title/Summary/Keyword: 수평 하중

Search Result 764, Processing Time 0.025 seconds

Aerodynamic Load Analysis for 1MW HAWT Blade According to IEC61400-1 (바람조건에 따른 1MW급 수평축 풍력터빈 브레이드의 하중 해석)

  • Kim, Jin;Ryu, Ki-Wahn;Lee, Chang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.409-413
    • /
    • 2007
  • To assure the structural integrity for the hub and low speed shaft (LSS) of the drive train, it is necessary to obtain the ultimate aerodynamic loads acting on the wind turbine blade. The aim of this study is to predict the time histories of 3 forces and 3 moments at the hub and the LSS based on the design load case of the IEC 61400-1. From the calculated results most of the load components have rotor revolution frequency whereas thrust and torque of the LSS show blade passage frequency. It turns out that the EWM wind condition involves the maximum ultimate loads at both hub and LSS of the horizontal axis wind turbine.

  • PDF

Model Test for the Behavior of Retaining Walls Under Surcharge Load (상재하중을 받는 토류벽체의 거동에 관한 모형실험 연구)

  • Jung, On-Su;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.49-57
    • /
    • 2005
  • The purpose of this study is to closely examine the influence of the surcharge load applied to the retaining wall through some model tests, in which wall stiffness in each stage of excavation, horizontal displacement of the retaining wall and surface displacement of the backfill according to wall stiffness and ground conditions, and change and distribution of the earth pressure applied to it were measured and their values were produced, then these values were mutually compared with their theoretical values and their values after analysis of the data obtained at the field, and they were analytically studied, in order to closely examine the influence of the surcharge load applied to the retaining wall. Findings from this study are as follows: The shape of ground surface settlement curve on the model ground under surcharge load, different from the distribution curve of regular probabilities which is of a shape of ground surface settlement under no surcharge load, appears in that settlement in an arching shape shows where the center part of surcharge load shows the maximum settlement. In examining the maximum horizontal displacement with the surcharge load applied to each stage of excavation, it occured at the point of 0.8H(excavation depth) when finally excavated. Regarding the range in which the displacement of the retaining wall increases according to application of surcharge load, the increment of displacement showed till the point of depth which is of two times of the distance of load from the upper part of the wall. Also since each displacement of the foundation plate caused by the ground surface settlement according to each stage of excavation occured most significantly at the final stage. Also since regarding wall stiffness, the wall of its thickness of 4mm(flexible coefficient $p:480m^3/t$), produced maximum 3 times of wall stiffness than its thickness of 9mm(flexible coefficient $p: 40m^3/t$), it was found out that influence of wall stiffness is so significant.

An Evaluation of Inelastic Behavior of a Cable Supported Bridge under Earthquake Load (지진하중을 겪는 케이블 지지 교략의 비탄성 거동 평가)

  • Lee, Kyoung-Chan;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.104-408
    • /
    • 2003
  • 케이블 장대 교량의 해석에 있어서 기하적인 비선형만을 고려한 해석이 보편적이었다. 하지만 이 연구에서는 내진 해석시 케이블지지 교량이 비탄성적으로 거동 할 수 있기 때문에, 기하적인 비선형 이외에 재료적인 비선형을 고려할 필요가 있음을 보이고자 한다. 극한 하중 상태를 모사하기 위하여 사하중에 하중계수를 곱하여 하중을 증가시켜 중력방향으로 하중을 가하였고, 지진에 대한 하중 상태를 모사하기 위하여 교축방향의 지진 하중에 대한 등가의 등분포 하중과 이의 0.3배에 해당하는 수직 방향 하중을 동시에 가하였다. 이러한 해석을 통하여 자중의 2배 이상의 하중이 가해지면 거더가 비탄성적으로 거동 할 수 있고, 또한 교축 방향과 수직 방향의 설계지진하중을 고려할 경우 수평방향의 구속이 모두 풀리면 주탑이 비탄성적으로 거동 할 수 있음을 알 수 있다. 따라서 케이블지지 교량의 지진 해석시 특정한 경우에 있어서는 비탄성 거동을 고려해야 할 필요가 있을 것으로 보인다.

  • PDF

Effective Beam Width for Flat-Plate Systems Having Edge Beams under Lateral Loads (수평하중을 받는 테두리보가 있는 플랫플레이트 시스템의 유효보폭계수)

  • Han, Sang-Whan;Cho, Ja-Ock;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2008
  • The purpose of this study is to propose frame analysis method for flat plate slabs having edge beam under lateral loads. Flat plate system is defined as the system only with slab of uniform thickness and column. However, the slab system generally incorporate edge beams at exterior connection in actual design. ACI 318 (2005) allows three methods for conducting flat plate system analysis subjected to lateral loads. There are the finite element method (FEM), the equivalent frame method (EFM), and the effective beam width method (EBWM). Among methods, the EBWM enables us to analyze practically by substituting the actual slab to beam element. In this model, the beam element has a thickness equal to that of the slab, and effective beam width equal to some fraction of the slab transverse width. However, the established EBWM was generally proposed for variables of geometry or stiffness reduction factor and seldom proposed for the effect of edge beams. This study verifies that, in the case of flat plate system having edge beams at exterior connections, the lateral stiffness is considerably larger than without edge beams. Therefore it need to analysis method for considered the effect of edge beams. In this study, an analysis model is proposed for the flat plate system having edge beams under lateral loads by considering the effect of edge beams. To verify the accuracy of proposed model, this study compared results of the proposed EBWM with results of FEM of flat plate systems having edge beams under lateral loads. Also, the proposed approach is compared with experimental results of former research.

Calculation of Reasonable Equivalent Uniform Pressure Height and Lateral Earth Pressure Characteristics of Retaining Structures (옹벽에 작용하는 수평토압 특성 분석 및 합리적인 등가상재하중 높이 산정)

  • Lee, Kicheol;Chung, Moon-Kyung;Seo, Seunghwan;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.139-149
    • /
    • 2019
  • For retaining wall designs, horizontal earth pressure induced by traffic loads over the walls is calculated based on equivalent uniform pressure height. The AASHTO LRFD design standards propose equivalent uniform pressure height of traffic loads; however, the equivalent uniform pressure height is calibrated using the US standard trucks. As the domestic standard trucks are different from the US standard trucks, in this study, new domestic equivalent uniform pressure height is proposed using the Boussinesq theory varying vehicle directions, Poisson's ratios of pavement layers, and retaining wall height. The proposed equivalent uniform pressure heights are generally higher than those proposed by the AASHTO design standards because the axle loads and their densities of two domestic standard trucks are higher than those of the US standard trucks. The most highest equivalent uniform pressure height was found for traffic direction perpendicular to longitudinal direction of retaining wall.

Assessment of Transmissivity of Blended Geotextiles for Drainage (배수용 혼합 지오텍스타일의 수평투수성 평가)

  • 전한용;목문성;주용수;유중조
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.428-431
    • /
    • 2001
  • 토목합성재료(Geosynthetics) 중 배수용으로 사용되는 재료는 기능상 유체의 흐름을 수평방향으로 유도하는 재료를 의미하며, 일반적으로 저장된 유체를 수직으로 이동시키는 필터기능을 가지는 1,000g/㎡ 미만의 지오텍스타일(geotextiles)과 수평방향의 유도로를 확보한 지오네트(geonets)를 결합시킨 지오네트 복합제품이 사용되고 있다. 이러한 배수용 토목합성재료는 쓰레기 매립장의 건설 시 침출수의 외부유출을 차단하기 위하여 설치하는 차수막인 지오멤브레인(geomembranes)을 매립된 쓰레기 하중 및 외부의 충격으로부터 보호하는 용도로 사용된다. (중략)

  • PDF

A Study on the Monitoring Case of the Soil Blocking Facilities Due to Water Pipe Rupture Accident (상수관 파열 사고로 인한 흙막이 가시설 계측사례 연구)

  • Woo, Jong-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.244-246
    • /
    • 2023
  • 아파트 신축공사 흙막이 가시설 현장에 근접 매설된 상수관의 누수 및 파열 사고로 인접 건물이 공사현장 방향으로 58~188mm 기울어졌으며, 지중수평경사계 계측결과 21.07.20일 22.64mm가 21.10.18.일 101.46mm로 급격하게 78.82mm의 큰 수평 변위가 발생되었으며, 이로 인해 흙막이 가시설의 사보강재가 변형되고 토류판 일부가 파손되었다.

  • PDF

지중배전 및 송전케이블공사 감리실무

  • 한국전력기술인협회
    • Electric Engineers Magazine
    • /
    • v.231 no.11
    • /
    • pp.18-24
    • /
    • 2001
  • 맨홀, 전력구내에 케이블 및 접속함을 설치하기 위해서는 먼저 앵글형 지지대 또는 강관형 지지대를 설치하여야 한다. 케이블 지지대는 맨홀 및 전력구내에 설치되는 케이블 및 접속함 자중에 의한 수직하중과 케이블 포설시가해지는 수평하중에 견디어야 하므로 시공에 철저를 기하여야 한다. 특히 맨홀 및 전력구내부에는 습기가 많아 방식용 도금이 벗겨지지 않도록 운반 및 시공시 주의가 요구된다.

  • PDF

Evaluation of Structural Performance and Dynamic Characteristics of Korean Traditional Timber Structure Sungnyemun (한국 전통 목조건축 숭례문의 구조성능 및 동적특성 평가)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.607-614
    • /
    • 2015
  • In this research, the structural analysis and safety evaluation for Sungnyemun -No.1 national treasure of Korea- was performed. Roof loads were calculated in detail, and structural analysis model was constructed using Midas Gen ver.820. Static structural analysis under vertical loads was performed and safety of main structural members and serviceability of main horizontal members were evaluated. To evaluate dynamic characteristics of Sungnyemun, both field measurements by impact hammer test and eigenvalue analysis by structural analysis software were performed and the results were compared. Sungnyemun showed rooms in their structural capacity.

A Study on Fatigue Life Design for Horizontal Axis Wind Turbine Composite Blade (수평축 풍력발전 시스템용 복합재 회전날개의 피로수명 설계에 관한 연구)

  • 공창덕;방조혁;정종철;강명훈;정석훈;류지윤;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.47-52
    • /
    • 1999
  • Fatigue test is an essential procedure in the dynamic structure design. It is performed to confirm that the structure should safety the required life. In this study, fatigue life for 750㎾ class horizontal axis wind turbine composite blade was investigated. Required fatigue stress was calculated by fan Bond's empirical equation and S-N linear damage method. Fatigue load for FEM analysis was calculated using load spectrum through experiments and Spera's method. Service fatigue stress was obtained by FEM with the calculated fatigue load. From comparison of the fatigue stresses, fatigue life over 20 years was confirmed.

  • PDF