• Title/Summary/Keyword: 수평 이동

Search Result 768, Processing Time 0.024 seconds

Bathymetric and Topographic Changes of the Gomso-Bay Tidal Flat, West Coast of the Korean Peninsula (한반도 서해안 곰소만 갯벌의 수심 및 지형 변화)

  • Jin Ho Chang;Yong-Gil Kim;Myong Sun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.552-561
    • /
    • 2023
  • The seafloor topography of Gomso Bay on the west coast of Korea was investigated using subtidal bathymetry and tidal-flat altimetry. Gomso Bay consists of 80% tidal flats and 20% subtidal zone, and is divided into an outer bay and an inner bay by the Jujincheon esturary channel. The outer bay tidal flat, has few tidal channels, has a concave topographic profile, and is characterized by the development of chenier and intertidal sand bars, giving it the appearance of gently sloping, dissipative beaches. The inner bay tidal flat has wide upper and middle tidal flats with a well-developed tidal channel system without cheniers. Moreover, the topographical cross-section between these tidal channels is convex upward, and shows the characteristics of a depositional environment greatly influenced by tidal channels and tidal action. An analysis of the horizontal movement of the tidal flat environment over the past 37 years investigating changes in the iso-depth lines in the Gomso-Bay tidal flat between 1981 and 2018 revealed that the Gomso-Bay tidal flat retreated gradually landward. As a result of analyzing the erosion and sedimentation characteristics of Gomso Bay, assuming that most of the water depth changes were due to changes in the elevation of the sea floor and sea level, an average of 1 cm (0 mm/y) of sediment was eroded in the outer bay over the past 37 years (1981-2018), In the inner bay, an average of 50 cm (14 mm/y) was deposited. Notably, the high tidal flats of the outer bay were largely eroded. Monitoring photographs of the coast showed that most of the erosion of the high tidal flats in the outer bay occurred in a short period around 1999 (probably 1997-2002), and that the erosion resulted from the erosion of sand dunes and high-tide beaches caused by temporarily greatly raised high tide levels and storms.

Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea (평균역학고도장과 인공위성고도계 자료를 이용한 동해 표층해류 추산)

  • Lee, Sang-Hyun;Byun, Do-Seong;Choi, Byoung-Ju;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.195-204
    • /
    • 2009
  • In order to estimate sea surface current fields in the East Sea, we examined characteristics of mean dynamic topography (MDT) fields (or mean surface current field, MSC) generated from three different methods. This preliminary investigation evaluates the accuracy of surface currents estimated from satellite-derived sea level anomaly (SLA) data and three MDT fields in the East Sea. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) provides a MDT field derived from satellite observation and numerical models with $0.25^{\circ}$ horizontal resolution. Steric height field relative to 500 dbar from temperature and salinity profiles in the East Sea supplies another MDT field. Trajectory data of surface drifters (ARGOS) in the East Sea for 14 years provide another MSC field. Absolute dynamic topography (ADT) field is calculated by adding SLA to each MDT. Application of geostrophic equation to three different ADT fields yields three surface geostrophic current fields. Comparisons were made between the estimated surface currents from the three different methods and in-situ current measurements from a ship-mounted ADCP (Acoustic Doppler Current Profiler) in the southwestern East Sea in 2005. For offshore areas more than 50 km away from the land, the correlation coefficients (R) between the estimated versus the measured currents range from 0.58 to 0.73, with 17.1 to $21.7\;cm\;s^{-1}$ root mean square deviation (RMSD). For coastal ocean within 50 km from the land, however, R ranges from 0.06 to 0.46 and RMSD ranges from 15.5 to $28.0\;cm\;s^{-1}$. Results from this study reveal that a new approach in producing MDT and SLA is required to improve the accuracy of surface current estimations for the shallow costal zones of the East Sea.

Report about First Repeated Sectional Measurements of Water Property in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 최초 연속 물성 단면 관측 보고)

  • GYUCHANG LIM;JONGJIN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.56-76
    • /
    • 2024
  • We for the first time made a successful longest continuous sectional observation in the East Sea by an underwater glider during 95 days from September 18 to December 21 2020 in the Korea along the 106 Line (129.1 °E ~ 131.5 °E at 37.9 °N) of the regular shipboard measurements by the National Institute of Fishery Science (NIFS) and obtained twelve hydrographic sections with high spatiotemporal resolution. The glider was deployed at 129.1 °E in September 18 and conducted 88-days flight from September 19 to December 15 2020, yielding twelve hydrographic sections, and then recovered at 129.2 °E in December 21 after the last 6 days virtual mooring operation. During the total traveled distance of 2550 km, the estimated deviation from the predetermined zonal path had an average RMS distance of 262 m. Based on these high-resolution long-term glider measurements, we conducted a comparative study with the bi-monthly NIFS measurements in terms of spatial and temporal resolutions, and found distinguished features. One is that spatial features of sub-mesoscale such as sub-mesoscale frontal structure and intensified thermocline were detected only in the glider measurements, mainly due to glider's high spatial resolution. The other is the detection of intramonthly variations from the weekly time series of temperature and salinity, which were extracted from glider's continuous sections. Lastly, there were deviations and bias in measurements from both platforms. We argued these deviations in terms of the time scale of variation, the spatial scale of fixed-point observation, and the calibration status of CTD devices of both platforms.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

Studies on Neck Blast Infection of Rice Plant (벼 이삭목도열병(病)의 감염(感染)에 관(關)한 연구(硏究))

  • Kim, Hong Gi;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.206-241
    • /
    • 1985
  • Attempts to search infection period, infection speed in the tissue of neck blast of rice plant, location of inoculum source and effects of several conditions about the leaf sheath of rice plants for neck blast incidence have been made. 1. The most infectious period for neck blast incidence was the booting stage just before heading date, and most of necks have been infected during the booting stage and on heading date. But $Indica{\times}Japonica$ hybrid varieties had shown always high possibility for infection after booting stage. 2. Incubation period for neck blast of rice plants under natural conditions had rather a long period ranging from 10 to 22 days. Under artificial inoculation condition incubation period in the young panicle was shorter than in the old panicle. Panicles that emerged from the sheath of flag leaf had long incubation period, with a low infection rate and they also shown slow infection speed in the tissue. 3. Considering the incubation period of neck blast of rice plant, we assumed that the most effective application periods of chemicals are 5-10 days for immediate effective chemicals and 10-15 days for slow effective chemicals before heading. 4. Infiltration of conidia into the leaf sheath of rice plant carried out by saturation effect with water through the suture of the upper three leaves. The number of conidia observed in the leaf sheath during the booting stage were higher than those in the leaf sheath during other stages. Ligule had protected to infiltrate of conidia into the leaf sheath. 5. When conidia were infiltrated into the leaf sheath, the highest number of attached conidia was observed on the panicle base and panicle axis with hairs and degenerated panicle, which seemed to promote the infection of neck blast. 6. The lowest spore concentration for neck blast incidence was variable with rice varietal groups. $Indica{\times}Japonica$ hybrid varieties were infected easily compared to the Japonica type varieties, especially. The number of spores for neck blast incidence in $Indica{\times}Japonica$ hybrid varieties was less than 100 and disease index was higher also in $Indica{\times}Japonica$ hybrid than in Japonica type varieties. 7. Nitrogen content and silicate content were related with blast incidence in necks of rice plants in the different growing stage changed during growing period. Nitrogen content increased from booting stage to heading date and then decreased gradually as time passes. Silicate content increased from booting stage after heading with time. Change of these content promoted to increase neck blast infection. 8. Conidia moved to rice plant by ascending and desending dispersal and then attached on the rice plant. Conidia transfered horizontally was found very negligible. So we presumed that infection rate of neck blast was very low after emergence of panicle base from the leaf sheath. Also ascending air current by temperature difference between upper and lower side of rice plant seemed to increase the liberation of spores. 9. Conidial number of the blast fungus collected just before and after heading date was closely related with neck blast incidence. Lesions on three leaves from the top were closely related with neck blast incidence, because they had high potential for conidia formation of rice blast fungus and they were direct inoculum sources for neck blast. 10. The condition inside the leaf sheath was very favorable for the incidence of neck blast and the neck blast incidence in the leaf sheath increased as the level of fertilizer applied increased. Therefore, the infection rate of neck blast on the all panicle parts such as panicle base, panicle branches, spikelets, nodes, and internodes inside the leaf sheath didn't show differences due to varietal resistance or fertilizers applied. 11. Except for others among dominant species of fungi in the leaf sheath, only Gerlachia oryzae appeared to promote incidence of neck blast. It was assumed that days for heading of varieties were related with neck blast incidence.

  • PDF

Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

  • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.369-384
    • /
    • 2006
  • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.

Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium-82 PET (휴식/부하 심근 Rubidium-82 양전자단층촬영과 부하/휴식 심근 Tc-99m-MIBI 단일광자단층촬영의 비교)

  • Lee, D.S.;Kang, K.W.;Lee, K.H.;Jeong, J.M.;Kwark, C.;Chung, J.K.;Lee, M.C.;Seo, J.D.;Koh, C.S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1995
  • We compared stress/rest myocardial Tc-99m-MIBl tomographic image findings with rest/stress rubidium-82 tomographic images. In 23 patients with coronary artery disease (12 of them received bypass grafts before) and 6 normal subjects, rest rubidium PET study was performed : rubidium-82 and Tc-99m-MIBI were injected simultaneously to each patient after dipyridamole stress for rubidium PET and MIBI SPECT; and rest MIBI SPECT was performed 4 hours thereafter. We scored segmental decrease of rubidium or MIBI uptakes into 5 grades for 29 segments from 3 short-axis, vertical and horizontal slices. Scores were summed for each major arterial territory. When more score than two grade-2's or one grade-3 was considered as the cue for significant stenosis for major arterial territories, 67% of 46 stenosed arteries were found with MIBI studies and 78% of them by rubidium studies. Fourteen among 28 grafted arterial territories of 12 post-CABG patients were found normal with both rubidium and MIBI. Segmental scores were concordant between rubidium and MIBI in 72% of 709 stress segments and in 80% of 825 rest segments. Stress rubidium segmental scores were less than stress MIBI scores in 9%, so were rest rubidium scores. Stress rubidium scores were more than stress MIBI scores in 20% of segments, and rest rubidium segmental scores were more than rest MIBl scores in 11%. Rank correlations (Spearman's rho's more than 0.7(stress) and 0.5(rest), slopes (MIBI/rubidium) around 0.7(stress) and 0.9 (rest)) suggested deeper and wider defects in stress with rubidium. Slope over 1 (MIBI/rubidium) with LAD segemental scores at rest and 7 territories which had much larger score with MIBI revealed exaggeration of rest defects with rest MIBI in same-day stress/rest study. Difference scores (stress-rest for each territory) suggesting Ischemia were larger with rubidium (slope of MIBI/rubidium around 0.45). As has been implied by animal or separate-day-human studies, these segmental analyses with simultaneous examination in patients told that rubidium PET flow studies disclose ischemia more often than MIBI studies and that rest MIBI studies in same-day stress/rest-sequence gave a little larger rest defect than they would have shown.

  • PDF

A Study on Determination of Consumptive Use Needed in the Vegetable Plots for the Prevention of Drought Damage (고등채소의 한해를 방지하기 위한 포장 용수량 결정에 관한연구)

  • 최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.2949-2967
    • /
    • 1973
  • The purpose of this study is to find out and determine the minimum consumptive use of water for Korean cabbage and turmp, so that the minimum water requirement can be secured always for a stable cultivation of these vegetables regardless of weather conditions. The experiment was conducted in two periods; first one from May to July and second one from August to October, each experiment with two varieties of cabbage and two varieties of radish with 2 replicants and 15 treatments. The results found from the above are briefly as follows: 1. Since the mean soil moisture equivalent 64 days after the treatment was 28.5% and the soil moisture content at the time was 2.67% which is far less than that of the wilting point, the crop seemed to be extremely caused by a drought. 2. The rate of 51 days after the seeding, soil moisture content of plot No.2 where irrigation has been continuous was the highest or 21.3%, whereas the plot No.14 without irrigations was 11.2% and the lowest. Therefore, the soil moisture content for the minimum qrowth seemed to be 20%. 3. The consumptive coefficient of Blaney and Criddle on cabbage in two periods were K=1.14 and 0.97 respectively, and on radish in two periods were K=1.06 and 0.86 respectively, thus, cabbage was higher than radish. The consumptive coefficient in the first experiment (May-July) was 0.17 to 0.20 higher than the 2nd experiment(August-October). 4. Nomally, cabbage and radish germinate within one week, however, the germination ot these crops which were treated with a suspended water supply from the beginning took two full weeks. 5. When it elapsed 30 days after seeding, the conditions in plot 1,2 and 3 were fairly good however, the crops in the plops other than these showed a withering and the leaves were withered and changed into high green due to an extrem drought. Though it was about same at the beginning, the drought damage on cabbage was worse than that on radish period, and the reasos for this appears in the latter that the roots are grown too deep. 6. The cabbage showed a high affinity between treated plots and varieties. Consequently, it can be said that cabbage is very suseptive to drought damage, and the yield showed a difference of 35% to 56% depending on the selection oe varieties. 7. The radish also showed a high affinity between the treated plots, however, almost us affinity existed between varieties. Therfore, the yield of radish largely depends on the extent of drought, and the selection of variety does not affect at all. 8. The normal consumptive use on cabbage is $0.62{\ell}/sec$, while that on radish is $0.64{\ell}/sec$, and the minimum optimum water requirement that was obtained in this study is $4,000cc/day/m^3$ or $0.462{\ell}/sec/ha$.

  • PDF