• Title/Summary/Keyword: 수평 불연속면

Search Result 24, Processing Time 0.021 seconds

Behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane (수평 불연속변 하부에 굴착한 얄은 심도의 2-Arch 터널의 거동)

  • Cheon, Eun-Sook;Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • In this study, the behavior of shallow 2-Arch tunnel due to excavation under horizontal discontinuity plane was verified experimentally. The model tests were carried out by varying the overburden height and the location of the discontinuity plane. The model tests followed exactly the real 2-Arch tunnel construction stages. As a result, it is discovered that stress-transfer mechanism and loosening area around the 2-Arch tunnel depends on the overburden heights and the location of the discontinuity plane. And central pillar load is also dependent on overburden height, location of discontinuity plane and construction stages.

  • PDF

Sampling Bias of Discontinuity Orientation Measurements for Rock Slope Design in Linear Sampling Technique : A Case Study of Rock Slopes in Western North Carolina (선형 측정 기법에 의해 발생하는 불연속면 방향성의 왜곡 : 서부 North Carolina의 암반 사면에서의 예)

  • 박혁진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.145-155
    • /
    • 2000
  • Orientation data of discontinuities are of paramount importance for rock slope stability studies because they control the possibility of unstable conditions or excessive deformation. Most orientation data are collected by using linear sampling techniques, such as borehole fracture mapping and the detailed scanline method (outcrop mapping). However, these data, acquired by the above linear sampling techniques, are subjected to bias, owing to the orientation of the sampling line. Even though a weighting factor is applied to orientation data in order to reduce this bias, the bias will not be significantly reduced when certain sampling orientations are involved. That is, if the linear sampling orientation nearly parallels the discontinuity orientation, most discontinuities orientation data which are parallel to sampling line will be excluded from the survey result. This phenomenon can cause serious misinterpretation of discontinuity orientation data because critical information is omitted. In the case study, orientation data collected by using the borehole fracture mapping method (vertical scanline) were compared to those based on orientation data from the detailed scanline method (horizontal scanline). Differences in results for the two procedures revealed a concern that a representative orientation of discontinuities was not accomplished. Equal-area, polar stereo nets were used to determine the distribution of dip angles and to compare the data distribution fur the borehole method versus those for the scanline method.

  • PDF

Ultrasonic Reflection Imaging for Discontinuity Detection of Rock Mass - Laboratory Study (암반 불연속면 탐측을 위한 초음파 반사 이미지 - 실내실험)

  • Lee, Jong-Sub;Kim, Seung-Sun;Kim, Dong-Hyun;Kim, Uk-Young;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.51-65
    • /
    • 2007
  • The purpose of this study is the development and application of a high resolution ultrasonic wave imaging system to detect discontinuity plane in lab-scale rock models. This technique is based on received time series which capture the multiple reflections at interface. This study includes the fundamental aspects of ultrasonic wave propagation in rock mass, the selection of the optimal ultrasonic wave transducer, data gathering, a signal processing, imaging methods, and experiments. Experiments are carried out by the horizontal movement and rotation devices. Experimental studies show the discontinuity is well detected by the horizontal movement and rotation devices under water. Furthermore, the discontinuity and the cavity on the plaster block are identified by the rotation device. This study suggests that the new method may be an economical and effective tool for the detection of the discontinuity on rock mass.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Comparison of the RMR Ratings by Tunnel Face Mappings and Horizontal Pre-borings at the Fault Zone in a Tunnel (터널 단층대에서 수평시추와 막장관찰에 의한 RMR값의 비교 분석)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.39-46
    • /
    • 2005
  • The RMR ratings, one by horizontal pre-boring in a tunnel and another by tunnel face mapping, are compared at the fault zone in a tunnel. Generally. the horizontal pre-borings were so effective as to forecast reasonably the supporting patterns after tunnel excavation. But the maximum difference in RMR ratings estimated by two methods was about 50 at a certain section of a tunnel. The differences were analyzed on each parameter of the RMR system: the rating differences were 24 in the condition of discontinuities, 15 in the RQD and 13 in the uniaxial compressive strength of rock. To minimize the gap between RMR by pre-borings and by face mappings, it is necessary to select the horizontal pre-boring location where tunnel stability could be critical and to evaluate in detail the sub-parameters of the condition of discontinuities.

Sensitivity Analyses of Three-Dimensional Discrete Fracture Network Modeling of Rock Mass (암반의 3차원 불연속균열망(DFN)에 관한 연구 및 민감도분석)

  • Park, Jung Chan;Park, Seung Hun;Kim, Ha Yung;Kim, Geon-Young;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.341-358
    • /
    • 2015
  • This study analyzes the relationship between parameters of the discontinuity in Discrete Fracture Network model such as fracture intensity, fracture orientation, fracture size, fracture shape etc. In this paper, FracMan code was used to model and analyze 3D DFN. A sensitivity analysis was performed in order to analyze the relationship between linear fracture intensity measure ($P_{10}$) and parameters of the discontinuity in $100m{\times}100m{\times}100m$ model area. As a result the sensitivity analysis showed that key parameters affecting fracture intensity are fracture orientation (Trend / Plunge). Conversion factor($C_{13}$) for $P_{10}$, to calculate volumetric fracture intensity measure ($P_{32}$), is derived in case of vertical well and horizontal well when trend is $10^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, $180^{\circ}$ (7cases) and plunge is $5^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $85^{\circ}$ (7cases). It is expected that this paper can be used effectively for modeling and understanding DFN model.

Displacement Analysis of an Excavation Wall using Inclinometer Instrumentation Data, Banyawol Formation, Western Daegu (경사계를 이용한 대구 서부지역 반야월층 굴착 지반의 변위 분석)

  • Ihm, Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • To analyze lateral displacement of excavation walls exposed during the construction of Subway Line 1 in the Daegu region, inclinometer measurement data for sites D4, D5, and Y6 are investigated from the perspective of engineering geology. The study area, in the Banyawol Formation, Hayang Group, Gyeongsang Supergroup, is in the lower part of bedrock of andesitic volcanics, calcareous shale, sandstone, hornfels, and felsite dykes that are unconformably overlain by soil. The rock mass around the D4 site is classified as RMR-V grade and the maximum lateral displacement of 101.39 mm, toward N34W, was measured at a bedding-parallel fault, at a depth of 12 m. The rock mass around the D5 site is classified as RMR-IV grade and the maximum lateral displacement of 55.17 mm, toward the south, was measured at a lithologic contact between shale and felsite, at a depth of 14 m. The rock mass around the Y6 site is classified as RMR-III grade and the maximum lateral displacement of 12.65 mm, toward S52W, was measured at an unconformity between the soil and underlying bedrocks, at a depth of 7 m. The directions of lateral displacement in the excavation walls are vector sums of the directions perpendicular to the excavation wall and horizontally parallel to the excavation wall. Lateral displacement graphs according to depth in the soil profile show curvilinear trajectories, whereas those in bedrock show straight and rapid-displacement trajectories.

A Study on the Effects of Chemical Grout on the Shear Strength of Fresh Granite Joints (신선한 화강암 절리면에서 약액에 의한 전단강도의 변화에 대한 연구)

  • Chung, Hyung Sik;Lee, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.99-106
    • /
    • 1990
  • This study was aimed to see the effect of chemical grout on fresh granite joint shear strength. The grouting chemical used in this study was composed of 25% water glass. Direct shear tests were performed on the chemical filled joints, which had been made artificially with granite. The test results show that chemical grouted rock jonts have markedly reduced shear strength comparing with the ungrouted fresh joints and they sheared within chemical grout before the rock to rock contact had been established, while the ungrouted joint sheared between rock surfaces from the beginning of shear deformation. With chemical grouted joints the shear stress slowly reached its maximum without showing distinct peak shear strength. Therefore the shear stiffness of joints were decreased with increasing thickness of grout. but the shear strain at failure was increased with it.

  • PDF

A Model Study of Processing Methods of Seismic Refraction Data for Mapping Geological Discontinuities - GRM, GLI, Tomography (지질불연속면에 대한 탄성파 굴절법탐사 자료처리 고찰 - GRM, GLI, Tomography)

  • Kim, Ji-Soo;Kim, Su-Hyun;Lee, Jun-Ho;Kim, Won-Ki;Lee, Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.327-335
    • /
    • 2006
  • Three processing strategies of seismic refraction data are tested in terms of velocity and depth profiles or structures for mapping of geological discontinuities: GRM(generalized reciprocal method), GLI(generalized linear inversion), Tomography. The test data used in this study are the shot gathers reconstructed by numerical modeling for the structures of 3 planar layers(horizontal, inclined), the buried vertical fracture zones, and vertical fault zones. Tomography is shown to be very efficient for mapping of more complicated tone such as vertical fault and buried fracture zones, whereas GRM and GLI can be useful for horizontal and/or inclined layers, probably on their bases of analysis of first arrivals in travel time curves.

Rock Anchors Subjected to Static Uplift Loads ; Shear Stress Distribution of Tendon-Grout Interface (정적 인발하중을 받는 암반 앵커의 거동;텐던-그라우트 경계면의 전단응력 분포)

  • 임경필;조남준;황성일
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.143-154
    • /
    • 1999
  • In this study, the load transfer mechanism of tendon-grout interface of rock anchors has been examined through a series of static pull-out tests conducted on the model rock anchors constructed in the natural and artificial rock masses of granite and concrete, respectively. Several rock masses with horizontal discontinuities have been prepared to study the effects of weak planes on the shear stress distribution in tendon-grout interface. As a result, for the rock anchors constructed in the rock mass without discontinuities, stress concentration occurs on the upper part of the tendon-grout interface. On the contrary, as the frequency or the number of discontinuities increases, the shear stress distribution along the depth tends to be uniform. Also, an experimental equation about shear stress distribution between tendon-grout interface can be made by the regression of test results. The shear stresses computed from the experimental results between the rock surface and the depth of 2~3 times the tendon diameter are smaller than those from theory. Below the depth, the reverse can be observed.

  • PDF