• Title/Summary/Keyword: 수평력

Search Result 668, Processing Time 0.027 seconds

Analysis of Tensile Force of Nail and Displacement of Soil Nailed Wall at Stepwise Excavation (단계별 굴착시 쏘일네일링 벽체의 변위와 네일의 인장력 분석)

  • 전성곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.71-86
    • /
    • 1999
  • The displacements of soil nailed wall and the nail tensile force for 11 soil nailing sites were investigated by using measurements obtained from inclinometer and strain gauge. The maximum horizontal displacement which occurred between 5% and 15% of the final excavation depth was found to be below 0.3% and 0.2% of excavation depth for well and poorly constructed sites. It was also found that the maximum horizontal displacements for 0.4%, 0.3% and 0.2% of excavation depth occurred when the ratios of nail length to final excavation depth were 0.5, 0.5~0.6 and 0.6~0.7. But the maximum horizontal displacement increased by 0.3% of excavation depth when the ratio was above 0.7. This was probably due to the shallow excavation depth and the deep soil stratum. The non-dimensional maximum tensile force of nail, K, from ground surface to $(0.6H_f)$ of the final excavation depth was less than 0.8 and decreased linearly between $(0.6H_f)$ and the final excavation depth. Also, the maximum tensile force was found to reach up to 60% of the ultimate tensile force at final excavation.

  • PDF

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

A Study on the Bearing Characteristics of No-grouted and End-compressed Micropile Adopting Wedge Horizontal Force (쐐기수평력을 도입한 무그라우팅 선단압축 마이크로파일의 지지력 특성에 관한 연구)

  • Hwang, Gyu-Cheol;Ahn, U-Jong;Lee, Jeong-Seob;Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2018
  • In this study, we developed a micropile equipped with ground fixing wedge device which is able to ensure the bearing capacity early before grouting by expanding the tip and exerting the tip surface friction while compressing and expanding the tip of the micropile during loading. The purpose of this study is to verify the applicability of the developed micropile to the ground with various kinds of strength and to compare its characteristics with those of the simple tip expansion micropile. A new test system including a model soil box which can measure the tip resistance and the tip skin friction separately was devised. The loading test was carried out according to the changes of the ground strength and the tip cross section using the devised test systems. As a result of the test, it was found that the developed micropile increased the tip skin friction due to the wedge horizontal force as the soil strength increased and could be applied more effectively to the ground with the strength not lower than the strength of the weathered rock. In addition, it was found that additional bearing capacity could be obtained due to the tip cross section expansion and the wedge horizontal force exertion even in the ground with the strength below the weathered rock strength.

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

Development of a scratch tester using a two-component force sensor (2축 힘센서를 이용한 스크레치 테스트 개발)

  • 김종호;박연규;이호영;박강식;오희근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

Study for weight of wedge type rail clamp according to initial clamping force (레일클램프의 원활한 클램핑과 초기체결력 발휘를 위한 중추무게의 관계에 관한 연구)

  • Han, Geun-Jo;An, Chan-Woo;Kim, Tae-Hyung;Sim, Jae-Jun;Han, Dong-Sub;Lee, Ho;Jeon, Young-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1517-1520
    • /
    • 2003
  • In this paper, we design a wedge type rail-clamp which can protect container crane from wind with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine the weight for locker to descent smoothly with an initial clamping force of rail and pad. Therefor, this paper suggest a process to decide a wright within proper range which could be obtained using FEA of wedge type rail clamp.

  • PDF

A study on the Impact force of floating body which acts on near shore structures - On the horizontal force acts on the vertical circular piles - (해안 구조물에 작용하는 부유체의 충격력에 관한 연구(I) - 연직원주에 작용하는 수평력 -)

  • Yang, Yun-Mo;Kim, Byeong-Uk;Kim, Do-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.105-120
    • /
    • 1982
  • The circular cylindrical piles are extensively used in near shore structures. For the purpose of analysing stability of vertical pile, we must consider the horizontal force, the lift force, and the traverse force etc. In this paper author studied horizontal force acts on the vertical circular pile and investigated the relation between the floating body coefficients C$$ and U$$T/D.

  • PDF

2축 로드셀 기반 스크레치테스터의 제작 및 평가

  • 이정일;김종호;이효직;오희근;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.170-170
    • /
    • 2004
  • 박막의 접착강도를 측정하기 위하여 수직력과 수평력을 동시에 측정할 수 있는 0.1∼100 N 용량의 2축 로드셀에 기반을 둔 스크레치 테스터를 개발하였다. 반도체용 Si wafer 기판 위에 Au나 Al 등의 금속이 관은 박막으로 증착된 제품을 table에 고정시킨 후, 2축 로드셀(x, z)이 장착된 하중센서의 선단에 Diamond Tip을 장착하여 기판과 박막에 하중(z-axis)을 증가시키면서 동시에 wafer를 x축 방향으로 이동시킨다. 이런 방식으로 시료의 표면을 긁으면 박막이 벗겨져 나가 Diamond Tip이 기판에 닿을 때 서로 다른 경도차에 의해 진동이 발생하게 되고, 이 진동을 Acoustic Emission 센서에서 감지하여 Crack 발생 시점의 Load와 Stroke를 찾아내게 된다.(중략)

  • PDF