• Title/Summary/Keyword: 수평거리 보정

Search Result 38, Processing Time 0.026 seconds

Comparison of Network-RTK Surveying Methods at Unified Control Stations in Incheon Area (인천지역 통합기준점에서 Network-RTK 측량기법의 비교)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.469-479
    • /
    • 2014
  • N-RTK(Network based RTK) methods are able to improve the accuracy of GNSS positioning results through modelling of the distance-dependent error sources(i.e. primarily the ionospheric and tropospheric delays and orbit errors). In this study, the comparison of the TTFF(Time-To-Fix-First ambiguity), accuracy and discrepancies in horizontal/vertical components of N-RTK methods(VRS and FKP) with the static GNSS at 20 Unified Control Stations covering Incheon metropolitan city area during solar storms(Solar cycle 24 period) were performed. The results showed that the best method, compared with the statics GNSS survey, is the VRS, followed by the FKP, but vertical components of both VRS and FKP were approximately two times bigger than horizontal components. The reason for this is considered as the ionospheric scintillation because of irregularities in electron density, and the tropospheric scintillation because of fluctuations on the refractive index take the place. When the TTFF at each station for each technique used, VRS gave shorter initialization time than FKP. The possible reasons for this result might be the inherent differences in principles, errors in characteristics of different correction networks, interpolating errors of FKP parameters according to the non-linear variation of the dispersive and non-dispersive errors at rover when considering both domestic mobile communication infra and the standardized high-compact data format for N-RTK. Also, those test results revealed degradation of positing accuracy, long initialization time, and sudden re-initialization, but more failures to resolve ambiguity during space weather events caused by Sunspot activity and solar flares.

Spatial Interpolation of Hourly Air Temperature over Sloping Surfaces Based on a Solar Irradiance Correction (일사 수광량 보정에 의한 산악지대 매시기온의 공간내삽)

  • 정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.

Accuracy Evaluation of DGPS Service via Terrestrial Digital Multimedia Broadcasting (지상파 DMB 기반 DGPS 서비스 측위 정확도 평가)

  • Kim, Hye-In;Kim, Ji-Hye;Kim, Koon-Tack;Park, Kwan-Dong;Kim, Du-Sik
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.437-442
    • /
    • 2012
  • As of 2012, for service-area-widening and commercialization of DGPS service, the Ministry of Land, Transport and Maritime Affairs has completed a DGPS service via Terrestrial Digital Multimedia Broadcasting and doing experimental broadcasting. In this study, kinematic positioning tests were conducted based on DGPS service via T-DMB using low-cost GPS equipments in a dynamic environment. Standalone GPS, single-reference NDGPS via NTRIP, and virtual-reference DGPS via T-DMB surveys were conducted at the same time. And horizontal positioning errors were computed by comparing them with the result of high-precision positioning. As a result, when the DMB transmission interval was 3 seconds, horizontal positioning errors of standalone GPS, NTRIP-DGPS, and DMB-DGPS were 2.3m, 1.0m, and 0.7m, respectively. When the interval was 1 second, horizontal positioning errors were 2.0m, 1.2m, and 0.8m, respectively. Thus horizontal positioning accuracies improved with the DMB-DGPS compared to the traditional single-reference NDGPS.

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

Beach Profile Estimation Using a Photogrammetry (사진측정법을 이용한 해빈단면의 추정)

  • Kim, Baeck-Oon;Park, Yong-Ahn;Oh, Im-Sang;Khim, Boo-Keun;Choi, Kyung-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.228-233
    • /
    • 1998
  • This study presents a close-range photogrammetry that is applicable to beach profile estimation using a non-metric camera. Based on the analysis of oblique video image in which the video camera was installed on a horizontal plane and the field of view was fixed, a new equation to analyze a photograph was developed considering the following aspects: (1) camera is allowed to be rotated about its optical axis and (2) a simple error model is adopted to correct lens distortion and other systematic errors associated with the non-metric camera, which improves accuracy of non-metric imageries. To test the modified technique, photographs of the beach were taken near the Donghae City in February, 1998. In addition, beach profiles were surveyed with conventional dumpy level and surveying staff. RMS error between the estimated and measured beach profiles is less than 10 cm in elevation.

  • PDF

Bright Band Detection Using X-band Polarimetric Radar (X-밴드 이중편파 레이더에 의한 밝은 띠 탐지)

  • Lee, Dong-ryul;Jang, Bong-joo;Hwang, Seok Hwan;Han, Myeong-sun;No, Huiseong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.17-17
    • /
    • 2016
  • 이중편파 레이더는 수평 수직반사도($Z_H{\cdot}Z_V$), 차등반사도($Z_{DR}$), 교차상관계수(${\rho}_{HV}$), 차등위상차(${\Phi}_{DP}$) 등 다양한 변수 산출을 통하여 대기 수상체 구분, 우적분포에 영향이 적은 강우량 추정, 밝은 띠(BB, Bright Band)의 탐지 등이 가능하게 됨으로써 수문기상 및 재해관리 분야에 활용성이 점점 더 커지고 있다. 본 연구는 RHI, PPI에서 생산된 레이더 변수를 이용하여 BB를 탐지하고 그 특성을 평가하였다. BB는 레이더를 이용하여 상층대기를 관측할 때 수직단면에서 강수입자가 눈에서 비로 변하는 구간에서 과대하게 높은 반사도가 나타나는 층을 말한다. BB에서는 QPE가 과대 추정되기 때문에, BB의 특성 파악은 레이더의 관측전략 수립과 QPE 보정에 필수적이다. 본 연구에서는 RHI에 의한 $Z_H$의 연직단면분석, RHI와 PPI의 고도각 경사거리(slant range) 빔의 ${\rho}_{HV}$, $Z_{DR}$, $Z_H$에 의한 분석을 통하여 BB의 상단부($BB_{TOP}$), 최정점($BB_{PEAK}$) 및 하단부($BB_{BOTTOM}$)의 고도를 상호 비교 평가하였다. 분석 자료는 KICT X-밴드 레이더에 의한 관측한 2015년 10월 21일의 층상운에 의한 강우를 이용하였다. RHI에 의한 $Z_H$의 연직단면 분석결과 $BB_{top}$, $BB_{bottom}$$BB_{peak}$는 KICT 레이더 고도(MSL : 40m)를 기준으로 각각 3.26Km, 2.3Km($BB_{width}$: 0.96km) 및 2.7Km로 나타났다. 이 같은 결과는 다른 2가지 분석방법에서도 유사하게 나타나고 있으며, 이는 BB분석을 위해 다양한 변수를 통한 신뢰성 있는 BB의 특성을 파악할 수 있는 기반을 제공한다.

  • PDF

Characteristics of Hydraulic Head Variation at Multi-packer Wells in a Coastal Area (해안지역 다중패커공에서의 수리수두 변화 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Ok, Soon-Il
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.291-298
    • /
    • 2015
  • For hydrogeological studies, it is of importance to observe hydraulic head in order to interpret groundwater flow, characterize aquifers, and calibrate groundwater flow model. This study analyzed the zonal variation of hydraulic heads at the eight monitoring wells (GM-1~GM-8) installed with multi-packers in a coastal area and verified vertical and lateral trends of the hydraulic gradients. Hydraulic heads were expressed as the depth of water because the monitoring wells have different depths. The hydraulic gradient at the nearest well (GM-5) shows 0.0142 with increasing trend of hydraulic gradient along depth. This fact indicates typical phenomenon of the discharge area. On the other hand, GM-1 and GM-2 wells in coastal area demonstrate constant hydraulic gradient down to the depth of 100 meters while at the zone of deeper than 100 m the hydraulic gradients illustrate 0.0196 and 0.0735, respectively. This indicates that horizontal flow is dominant at shallower zone than 100 m whereas upward flow is dominant at the zone deeper than 100 m. GM-3 well located farther than the other wells from the coast shows a small hydraulic gradient of 0.0046 that evidences a prevalent horizontal flow between the recharge area and the discharge area.

Simultaneous traveltime inversion of surface and borehole seismic data in Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 동시역산)

  • Kim, Ki-Yeong;Hong, Myung-Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Velocity structures were defined in the vicinty of the 140-m deep test borehole in the pungam basin through simultaneous inversion of surface seismic refraction and far-ofset VSP traveltime data. Seismicenergy generated at the surface by a seisgun was recorded both at 42 surface locations at 3-m intervalsalong the profiles in the N20E and its orthogonal directions and at 71 m depth in the borehole. Forthe ofset VSP study, seismic energy was generated by a 5 kg sledgehamer at the surface in the horizontal ofset range of -19.5∼+19.5 m from the borehole. The seismic signals were detected at 9∼99 m depths with 1∼2 m intervals and recorded for 204 ms per shot. After shot static corrections,first-arrival times picked from both the surface refraction and borehole records were simultaneouslyinverted to yield velocity tomograms. The tomograms indicate that a 1.5 m thick soil layer with velocities les than 500 m/s overlies basements having a velocity range of 3,067 ∼5,717 m/s. Within the basements,∼4 m and deeper than 71 m. The high-velocit yzones may be due to conglomerates intercalated with sandstones and siltstones. No evidence for large-scale fracture zones or faults is detected near the borehole

  • PDF

Simultaneous tomographic inversion of surface and borehole seismic traveltime data in the Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 토모그래피 동시역산)

  • Hong, Myung-Ho;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.125-130
    • /
    • 2006
  • Both surface seismic and far-offset VSP data were recorded alongtwo mutually perpendicular profiles in the Pungam basin. The first-arrival times were simultaneously inverted using the tomography method. For the surface data, seismic energy was generated by a 5-kg sledgehammer at 48 stations and detected by 21 surface geophones at 3 m intervals and one 3-component geophone in test borehole for the purpose of static corrections. For the VSP data, seismic waves generated by the sledgehammer on the ground were detected by a 3-component borehole geophone in a depth range of $9{\sim}99\;m$. Delay times of the hammer data were corrected using the seisgun data before the inversion to yield velocity tomograms. The tomograms indicates that the soil layer with velocities less than 750 m/s averages 1.8 m thick. The velocity varies from 5353 m/s at the depth range of $31{\sim}40\;m$ to 4262 m/s at the depth range of $65{\sim}73\;m$. Compared with core samples, the relatively large variation in velocity may due to lithology changes and fracture effects with depth.

  • PDF