• Title/Summary/Keyword: 수치해석적 연구

Search Result 6,077, Processing Time 0.033 seconds

Cloning and Characterization of Dihydroflavonol 4-reductase (DFR) from Matthiola incana R. Br. (Stock(Matthiola incana R. Br.)으로부터 색소유전자의 분리 및 분석)

  • 민병환;김석원;오승철;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.341-346
    • /
    • 1998
  • In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol 4-reductase (DFR) in Matthiola incana R. Br. A heterologous cDNA probe from Zea mays was used to isolate full-size DFR cDNA clone from a corolla-specific cDNA library. Comparison of the coding region of this DFR cDNA sequence including the sequences of Zea mays, Anthirrinum majus, Petunia hybrida, Callistephus chinensis, Dianthus caryophyllus and Rosa hybrida reveals a identity higher than 61% at the nucleotide level. The DFR transcript is G/C rich in monocotyledonous plants show a strong codon bias preferring codons with a G or C in the third position. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRNA from wild type and mutant plants and by in vitro expression yielding an enzymatically active reductase. Genomic southern blot analysis showed the presence of one gene for DFR in Matthiola incana. Northern blot analysis of the DFR wild type and mutant lines showed that the lack of DFR activity in the stable acyanic mutant k17b is clearly by a transcriptional block of the DFR gene.

  • PDF

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System (절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi;Lee, Dahye
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

Heat Transfer Characteristics for Inward Solidification in a Horizontal Cylinder Packed with P.C.M. (상변화물질을 충전한 수평원통관 내에서 응고시 열전달특성)

  • Yum, Sung-Bae;Hong, Chang-Shik;Lee, Chai-Sung
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.51-62
    • /
    • 1991
  • Heat transfer characteristics for heat retrieving processes in a paraffin-filled horizontal circular cylinder was studied. Theoretical and experimental analyses were carried out. In the theoretical analysis, solid and liquid phases were treated separately. Namely, convection for liquid and conduction for solid phase were investigated respectively. The retrieved heat was calculated from the experimentally determined solidified mass. Furthermore, the effects of initial temperature of the liquid and cooling temperature on the heat discharge rate were also studied. In the heat retrieving process, the governing factor for the solidifying rate is the cooling temperature, because most of the liquid sensible heat is rapidly discharged in the initial stage of solidification. Hence heat transfer mechanism during heat retrieving process can be safely considered as conduction. In the cut of frozen paraffin, there showed an empty space in the upper region. It is caused by the temperature drop in the liquid paraffin. While volume shrinkage caused by phase transition was indiscernible. Irrespective of cooling temperature and initial liquid temperature, solidified mass was well-correlated with the product of Fourier number and Stefan number in the solid phase.

  • PDF

Effect of Vane Angle of Swirl Type Mixer on Flow Mixing and Pressure Drop in Marine Selective Catalytic Reduction Systems (선박용 SCR 시스템에서 스월형 혼합기의 날개 각도가 유동혼합 및 압력강하에 미치는 영향)

  • Park, Taewha;Sung, Yonmo;Kim, Taekyoung;Choi, Cheolyong;Kim, Duckjool;Choi, Gyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.443-448
    • /
    • 2015
  • A swirl type mixer was developed to improve the flow mixing performance of a marine selective catalytic reduction system. In this study, the swirl type mixer and a multi-staged swirl type mixer, in which the angle of the vanes at each stage is controllable were considered to provide the optimal region of angles for the mixers. The effects of the vane angles in both mixers on the uniformity index and pressure drop were investigated using a computational fluid dynamics simulation. In the swirl type mixer, the optimal conditions for the flow mixing performance were observed at vane angles from 30 to 60 degrees when vane angles could be adjusted between 10 to 80 degrees, however, the pressure drop increased continually with increasing vane angle of the mixer. On the other hand, control of the individual staged angles of the multi-staged mixer showed that it is possible to keep enhancing flow mixing performance while reducing the pressure drop.

An Analysis on the Lateral Displacement of Earth Retaining Structures Using Fractal Theory (플랙탈 이론을 이용한 흙막이 벽체 수평변위 분석)

  • Lee, Chang-No;Jung, Kyoung-Sik;Koh, Hyung-Seon;Park, Heon-Sang;Lee, Seok-Won;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.19-29
    • /
    • 2015
  • Nowadays, the importance of the information management of construction sites to achieve the goal of safety construction. This management uses the collaborated analysis of in-situ monitoring data and numerical analysis, especially of an earth retaining structures of excavation sites. In this paper, the fractal theory was applied to actually monitored data from various excavation sites to develop the alternative interpolation technique which could predict the displacement behavior of unknown location around the monitoring locations and the future behavior of the monitoring locations with the steps of excavation. Data, mainly from inclinometer, were collected from various sites where retaining structures were collapsed during construction period, as well as from normal sites with the characteristics of geology, excavation method etc. In the analyses, Hurst exponent (H) was estimated with monitored periods using the Rescaled range analysis (R/S analysis) method applying the H in simulation processes. As the results of the analyses, Hurst exponents were ranged from 0.7 to 0.9 and showed the positive correlation of H > 1/2. The simulation processes, then, with the Hurst exponent estimated by Rescaled range analysis method showed reliable results. In addition, it was also expected that the variation of Hurst exponents with the monitoring period could instruct the abnormal behavior of an earth retaining structures to directors or operators. Therefore it was concluded that fractal theory could be applied for predicting the lateral displacement of unknown location and the future behavior of an earth retaining structures to manage the safety of construction sites during excavation period.

Development of Ocean Data Buoy and Real-Time Monitoring Technology (종합관측부이 개발 및 실시간 관측기술)

  • 심재설;이동영;박우선;박광순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-67
    • /
    • 1999
  • It is desired to use a domestically manufactured ocean data buoy for the long-term operational ocean monitoring. The ocean data buoy manufacturing technology was introduced through the research cooperation with the Qingkong University of Taiwan. The introduced ocean data buoy system was further expanded and improved for more efficient application for the marine environmental monitoring in Korea. The size of the ocean data buoy is 2.5 m in diameter, which is smaller compared to the NOAA's 3.0 m discus buoy to allow easy land transportation and ocean deployment as well. From the dynamic response test of the buoy carried out numerically, it was shown that the measurement of waves with period greater than 4 seconds is acceptable. The measurement and control system of the data buoy were improved to increase the number of measuring parameters, to reduce power consumption and to enhance better data analysis and management. Each component of the improved data buoy system was described in detail in this paper. Water quality sensors of water temperature, salinity, DO, pH and turbidity were added to the system in addition to the marine meteorological sensors of wind speed and direction, air temperature, humidity, air pressure and wave. Inmarsat satellite communication system is used for the real-time data telemetry from the buoy deployed offshore. A field performance test of the improved and domestically manufactured buoy was carried out for a month at the open sea off Pohang together with DatawelI's Wave-rider buoy to compare the wave data. The results of the test were satisfactory.

  • PDF

Hybrid Control of a Benchmark Cable-Stayed Bridge Considering Nonlinearity of a Lead Rubber Bearing (납고무받침의 비선형성을 고려한 벤치마크 사장교의 복합제어)

  • Park, Kyu-Sik;Jung, Hyun-Jo;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.51-63
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. This benchmark problem considers the cable-stayed bridge that is scheduled for completion in Cape Girardeau, Missouri, USA in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi river. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearlized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capabilities of each control strategy. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Conventional base isolation devices such as lead rubber bearings are used for the passive control design and Bouc-Wen model is used to simulate the nonlinear behavior of these devices For the active control design, ideal hydraulic actuators are used and on $H_2$/LQG control algorithm is adopted. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective compared to that of the passive control strategy and slightly better than that of the active control strategy. The hybrid control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

Detection of Low-RCS Targets in Sea-Clutter using Multi-Function Radar (다기능 레이다를 이용한 저 RCS 해상표적 탐지성능 분석)

  • Lee, Myung-Jun;Kim, Ji-eun;Lee, Sang-Min;Jeon, Hyeon-Mu;Yang, Woo-Yong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.507-517
    • /
    • 2019
  • Multi-function radar(MFR) is a system that uses various functions such as detection, tracking, and classification. To operate the functions in real-time, the detection stage in MFR usually uses radar signals for short measurement time. We can utilize several conventional detectors in the MFR system to detect low radar cross section maritime targets in the sea-clutter; however, the detectors, which have been developed to be effective for radar signals measured for a longer time, may be inappropriate for MFR. In this study, we proposed a modelling technique of sea-clutter short measurement time. We combined the modeled sea-clutter signal with the maritime-target signal, which was obtained by the numerical analysis method. Using this combined model, we exploited four independent detectors and analyzed the detection performances.