• Title/Summary/Keyword: 수치표고모형

Search Result 178, Processing Time 0.031 seconds

Area based image matching with MOC-NA imagery (MOC-NA 영상의 영역기준 영상정합)

  • Youn, Jun-Hee;Park, Choung-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.463-469
    • /
    • 2010
  • Since MOLA(Mars Orbiter Laser Altimeter) data, which provides altimetry data for Mars, does not cover the whole Mars area, image matching with MOC imagery should be implemented for the generation of DEM. However, automatic image matching is difficult because of insufficient features and low contrast. In this paper, we present the area based semi-automatic image matching algorithm with MOC-NA(Mars Orbiter Camera ? Narrow Angle) imagery. To accomplish this, seed points describing conjugate points are manually added for the stereo imagery, and interesting points are automatically produced by using such seed points. Produced interesting points being used as initial conjugate points, area based image matching is implemented. For the points which fail to match, the locations of initial conjugate points are recalculated by using matched six points and image matching process is re-implemented. The quality assessment by reversing the role of target and search image shows 97.5 % of points were laid within one pixel absolute difference.

Calculation of Pollutant Loadings from Stream Watershed Using Digital Elevation Model and Pollutant Load Unit Factors (발생부하원단위와 수치표고모형을 이용한 하천유역 오염부하량 산정)

  • Yang, Hong-Mo;Kim, Hyuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • The purpose of this study is to compare calculated pollutant loadings using pollutant load unit factors and vector type coverage, and expected mean concentration(EMC) and raster type of digital elevation model(DEM). This study is also focusing on comparison of the advantages and the disadvantages of the two methods, and seeking for a method of calculation of pollutant loadings using DEM. Estimation of pollutant inputs using pollutant load unit factors has limitations in identifying seasonal variations of pollutant loadings. Seasonal changes of runoffs should be considered in the calculation of pollutant loadings from catchments into reservoirs. Evaluation of pollutant inputs using runoff-coefficient and EMC can overcome these drawbacks. Proper EMC and runoff-coefficient values for the Koeup stream catchments of the Koheung estuarine lake were drawn from review of related papers. Arc/Info was employed to establish database of spatial and attribute data of point and non-point pollutant sources and characteristics of the catchments. ArcView was used to calculate point and non-point pollutant loadings. Pollutant loads estimated with either unit factors-coverages, i.e., pollutant load unit factors and vector coverages f point sources and land use, or EMC and digital elevation mode(DEM) were compared with stream monitoring loads. We have found that some differences were shown between monitoring results and estimated loads by Unit Factors-Coverage and EMC-DEM. Monthly variations of pollutant loads evaluated with EMC-DEM were similar to those with monitoring result. The method using EMC-DEM can calculate accumulated flows and pollutant loads and can be utilized to identify stream networks. A future research on correcting the difference between vector type stream using flow direction grid and digitalizing vector type should be conducted in order to obtain more exact calculation of pollutant loadings.

  • PDF

Antarctic DEMs Generation Using KOMPSAT-3A Stereo Images and Comparison by DEM Matching (KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교)

  • Lee, Hyoseong;Hwang, Hobin;Seo, Doochun;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2017
  • Antarctica, where ice sheet has been declined rapidly, should be monitored periodically. However, there are difficult to access for local survey or aircraft observation due to the vast and extreme environments of the polar regions. In order to overcome this problem, there have been a lot of studies by acquiring radar or laser data by satellite. It is also difficult to accurately measure the changes of the surface where is composed of snow or ice layer, and it is also difficult to product a high-resolution DEM. This study therefore aims to product DEMs of two periods using high-resolution KOMPSAT-3A stereo images, and DEM matching is implemented by the LZD(Least-squares Z-Differences) method to detect DEM changes in both periods. As a result, the proposed method could be suggested as comparing height differences of the two DEMs within 1m precision.

A Study on the Comparison of Channel Selection and Precision Geometric Correction for Image Restoration of an Submerged Water (수몰 지역의 영상복원을 위한 정밀기하보정 및 채널선정 비교연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • It's a very meaningful experimental study to image restoration of ancient villages vanished at the real life spatial world. Focused on Cheung-Pyung Lake around where most part were flooded by the Chung-Ju large dam founded in early 1980s, we used remote sensing technique in this study in order to restore topographical features before the flood with 3 dimensional effects. It was gathered comparatively good satellite photos and remotely sensed digital images, then its made a new color image from these and the topographical map which had been made before filled water. This task was putting together two kinds of different timed images. And then, we generated DEM(digital elevation model) including the outskirts of that area as harmonizing current contour lines with the map. That could be a perfect 3D image of Cheung-Pyung around before when it had been flood by making perspective images from all directions, north, south, east and west, for showing there in three dimensions. Also, flying simulation we made for close visiting can bring us to experience their real space at that time.

  • PDF

Visible Height Based Occlusion Area Detection in True Orthophoto Generation (엄밀 정사영상 제작을 위한 가시고도 기반의 폐색영역 탐지)

  • Youn, Junhee;Kim, Gi Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.417-422
    • /
    • 2008
  • With standard orthorectification algorithms, one can produce unacceptable structure duplication in the orthophoto due to the double projection. Because of the abrupt height differences, such structure duplication is a frequently occurred phenomenon in the dense urban area which includes multi-history buildings. Therefore, occlusion area detection especially for the urban area is a critical issue in generation of true orthophoto. This paper deals with occlusion area detection with visible height based approach from aerial imagery and LiDAR. In order to accomplish this, a grid format DSM is produced from the point clouds of LiDAR. Next, visible height based algorithm is proposed to detect the occlusion area for each camera exposure station with DSM. Finally, generation of true orthophoto is presented with DSM and previously produced occlusion maps. The proposed algorithms are applied in the Purdue campus, Indiana, USA.

Digital twin river geospatial information, water facility modeling, and water disaster response system (디지털 트윈 하천 공간정보 구축, 시설물 모델링 및 수재해 대응 시스템 구축 사례)

  • Park, DongSoon;Yoo, Hojun;Kim, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.6-6
    • /
    • 2022
  • 최근 수재해에 대응하기 위한 물관리 환경은 기후변화에 따른 홍수 피해 심화와 댐과 하천 시설의 노후화 점증, 하천관리일원화 등 정책적 변화, 그리고 포스트코로나 디지털 혁신 등 복합적 대전환 시대 진입에 따라 복잡다단한 양상을 보이고 있다. 디지털 트윈은 디지털 대전환(digital transformation) 시대 다양한 산업 영역에서 지능화와 생산성 향상을 목적으로 도입되고 있다. 본 국가 시범사업에서는 170 km에 달하는 섬진강 유역 전체를 대상으로 홍수에 대응하기 위한 디지털 트윈 플랫폼(K-Twin SJ)을 구축하고 있다. 본 플랫폼은 국가 인프라 지능정보화 사업의 일환으로 시작되었으며, 공간정보와 시설물 모델링, 홍수 분석 등 수재해에 대응하기 위한 수자원 분야의 다학제적인 강소기업들과 K-water에서 컨소시엄을 구성하여 추진하고 있다. 본 사업의 내용은 섬진강 댐-하천 유역에 대하여 고정밀도 3D 공간정보화, 실시간 물관리 데이터 연계, 홍수 분석 시뮬레이션, AI 댐 운영 최적화, AI 사면 정보 생성, 하천 제방 안전성 평가, AI 지능형 CCTV 영상분석, 간이 침수피해 예측, 드론 제약사항 조사 체계 개발을 포함하고 있다. 물관리 데이터와 하천 시설정보를 트윈 플랫폼 상에서 위치기반으로 시각화 표출하기 위해서는 유역의 공간정보를 3차원으로 구축하는 과정이 필수적이다. 따라서 GIS 기반의 섬진강 하천 중심 공간정보 구축을 위해 유역의 국가 정사영상과 5m 수치표고모형(DEM)은 최신성과를 협조 받아 적용하였으며, 홍수 분석을 위한 하천 중심 공간정보는 신규 헬기에 LiDAR 매핑을 수행하여 0.5m 급 DEM을 신규 구축하였다. 또한 하천 시설물 중 섬진강댐과 79개 주요 하천 횡단 교량과 3개 보 시설을 지상기준점 측량과 드론 매핑, 패턴 방식의 경량화 작업을 통해 트윈에 탑재할 수 있는 시설물 3D 객체 모델을 제작하였다. 홍수 분석을 위해서는 섬진강 유역에 대해 K-Drum, K-River, K-Flood 모델을 구축하였으며, AI 하천 수위 예측 학습 모델을 개발하였다. 섬진강 디지털 트윈 유역 물관리 플랫폼을 통해 데이터 기반의 똑똑한 물관리를 구현하고자 한다.

  • PDF

Urban Flood Simulation Considering Buildings Resistance Coefficient Based on GIS: Focused on Samcheok City (건물 저항계수에 따른 GIS기반의 밀집 시가지 침수모의 -삼척시가지를 중심으로-)

  • Ji, Juong-Hwan;Kang, Sang-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.211-220
    • /
    • 2010
  • The objective of this paper presents the application of an "integrated urban flood modeling-runoff model, urban flood model and sewer system model-" in a highly urbanized area of Samcheok where is seriously inundated in 2002 and 2003. For this, we demonstrate how couple a 1-D hydrodynamic model of the river, a 2-D hydrodynamic model of the overland (surface) flow, and a sewer network model including each boundary conditions. In order to make data file for the model, topographic information like elevation and share rate of buildings are directly extracted from DEM or topographical source data without data exchange to avoid uncertainty errors. Furthermore, the research is to assess the impacts of Manning n and buildings influences to inundated depth by changing its share ratio from 10 % to 30 % in low-land urban area. As a results, we found out that the urban inundated depth was decreased by Manning n but increased by buildings ratio. The calculated results of inundation was similar with observed one in 2002 and 2003 flooding. Furthermore, the area was also inundated under not riverbank break case in 2002 flooding.

Analysis of Terrain Change Caused by Mining Development using GIS (GIS를 이용한 광산개발지역의 추이 현황 분석)

  • Lee Hyung-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • There is a need to restore the terrain back its natural environment after mining development. It is necessary to compare the original and developing surfaces for post-management and to analyze the terrain change to develop a process for efficient restoration plan. This study analyzes and compares change to the terrain by annual mining development using GIS. Contours digitized with CAD based on photogrammetry are classified into annual data and created by Triangulated Irregular Network (TIN). By producing profiles and cross sections using TIN, many stations are distinguished. As a result of the terrain changes caused by mining development from 2000 to 2003 by operating elevation values each cell converted to raster from TIN, $11,094,460m^3$ are cut and $5,127,968m^3$ are filled up to 46% of cut volume, and annual surface changes of cut and fill area to mining are analyzed to visual and quantitative data. This study is used for the restoration plan and additional mining. And it is expected that this annual change, caused by mining development, can be used to return the terrain close to its original condition for finished mining area.

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

Spatio-temporal Regression Analysis between Soil Moisture Measurements and Terrain Attributes at Hillslope Scale (사면에서 지형분석을 통한 토양수분 시공간 회귀분석)

  • Song, Tae-Bok;Kim, Sang-Hyun;Lee, Yunghil;Jung, Sungwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.161-170
    • /
    • 2013
  • Spatio-temporal distribution of soil moisture was studied to improve understanding of hydrological processes at hillslope scale. Using field measurements for three designated periods during the spring, summer and autumn seasons in 2010 obtained from Beomryunsa hillslope located at the Sulmachun watershed, correlation analysis was performed between soil moisture measurements and 18 different terrain attributes (e.g., curvatures and topographic index). The results of correlation analysis demonstrated distinct seasonal variation features of soil moisture in different depths with different terrain attributes and rainfall amount. The relationship between predicted flow lines and distribution of the soil moisture provided appropriate model structures and terrain indices.