DOI QR코드

DOI QR Code

Spatio-temporal Regression Analysis between Soil Moisture Measurements and Terrain Attributes at Hillslope Scale

사면에서 지형분석을 통한 토양수분 시공간 회귀분석

  • Song, Tae-Bok (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Sang-Hyun (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Yunghil (Hydrologic Survey Center) ;
  • Jung, Sungwon (Hydrologic Survey Center)
  • 송태복 (부산대학교 공과대학 사회환경시스템공학부) ;
  • 김상현 (부산대학교 공과대학 사회환경시스템공학부) ;
  • 이연길 (유량조사사업단) ;
  • 정성원 (유량조사사업단)
  • Received : 2013.08.19
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

Spatio-temporal distribution of soil moisture was studied to improve understanding of hydrological processes at hillslope scale. Using field measurements for three designated periods during the spring, summer and autumn seasons in 2010 obtained from Beomryunsa hillslope located at the Sulmachun watershed, correlation analysis was performed between soil moisture measurements and 18 different terrain attributes (e.g., curvatures and topographic index). The results of correlation analysis demonstrated distinct seasonal variation features of soil moisture in different depths with different terrain attributes and rainfall amount. The relationship between predicted flow lines and distribution of the soil moisture provided appropriate model structures and terrain indices.

이 논문에서는 산지사면에서 나타나는 수문과정의 이해를 증진하기 위해서 관측된 토양수분의 분포와 거동을 수치지형분석을 통한 지형요소와의 상관관계를 연구하였다. 계절에 따른 강우 및 토양구조의 차이가 영향을 주는 사면 깊이 별 토양수분의 변동을 상관성 분석을 통해 도출하였다. 경기도 파주시 설마천 유역에 위치하고 있는 사면에서 봄, 여름, 가을 등 각 3계절을 대상으로 4월, 7월, 10월 기간의 토양수분 시계열 관측 자료를 사용하여, 지표면과 기반암의 표고 모형을 사용하여 다방향 흐름 알고리즘과 경사도, 곡률 등 18개 요소와의 상관관계를 분석하였다. 도출된 지형과 토양수분의 상관관계는 계절별로 강우의 양상과 토양 깊이에 따라 상이한 양상을 보여 주고 있다. 이러한 상관관계를 통해 사면에서 토양수분의 분포 및 흐름선을 예측하여 공간적인 분석을 도모하고, 토양수분의 거동을 가장 적합하게 모사하는 모형과 지형요소를 평가하고 도출할 수 있을 것이다.

Keywords

References

  1. Beven, K. J., and M. J. Kirkby, 1979: A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1), 43-69. doi:10.1080/02626667909491834
  2. Beven, K., 2002: Towards a coherent philosophy for environmental modelling. Proceedings of the Royal Society of London A 458(2026), 2465-2484. doi: 10.1098/rspa.2002.0986
  3. Carter, M. R., 1993: Soil water content. Soil sampling & methods of analysis. Canadian Society of Soil Science, Lewis Publishers. 541-557.
  4. Erskine, R. H., T. R. Green, J. A. Ramirez, and L. H. MacDonald, 2006: Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research 42(9), WR004648. doi: 10.1029/2005WR004648
  5. Kalma, J. D., and M. Sivapalan, 1995: Scale issues in Hydrological modelling. Wiley & Sons 1-8.
  6. Kim, S. H., J. Y. Han, G. Y. Lee, and N. W. Kim, 2003: The analysis of drainage time and resolution of the quasidynamic and dynamic wetness index. Journal of Korea Water Resources Association 36(6), 949-960. https://doi.org/10.3741/JKWRA.2003.36.6.949
  7. Kim, S., 2012: Characterization of annual soil moisture response pattern on a hillslope in Bongsunsa Watershed, South Korea. Journal of Hydrology 448-449, 100-111 https://doi.org/10.1016/j.jhydrol.2012.04.030
  8. Korea Institute of Construction Technology, 2007: Operation and research on the hydrological characteristics of the experimental catchment. Korea Institute of Construction Technology.
  9. Lee, H. S., K. H. Kim, J. Y. Han, and S. H. Kim, 2001: Prediction of soil distribution using digital terrain indices. Journal of Korea Water Resources Association 34(4), 391-401.
  10. O'Callaghan, J. F., and D. M. Mark. 1984: The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28(3), 323-344. https://doi.org/10.1016/S0734-189X(84)80011-0
  11. Park, J. H., I. W. Seo, and J. H. Sonu, 1999: Study on characteristics of transient solute transport in the Vadose Zone by using TDR: (1) relationship between water content and relative electrical conductivity. Journal of Korea Water Resources Association 32(6), 741-749.
  12. Quinn, P., K. Beven, P. Chevallier, and O. Planchon, 1991: The prediction of hillslope flow paths for distributed modelling using digital terrain models. Hydrological Processes 5(1), 59-80. doi: 10.1002/hyp.3360050106
  13. Seibert, J., and B. L. McGlynn, 2007: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43(4), WR04501. doi: 10.1029/2006WR005128
  14. Topp, G. C., J. L. Davis, and A. P. Annan, 1980: Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research 16(3), 574-582. doi: 10.1029/WR016i003p00574
  15. Wolock, D. M., and C. V. Price, 1994: Effects of digital elevation model map scale and data resolution on a topography based wetershed model. Water Resources Research 30(11), 3041-3052. doi: 10.1029/94WR01971
  16. Zhang, T., and R. Berndtsson, 1991: Analysis of soil water dynamics in time and space by use of pattern recognition. Water Resources Research 27(7), 1623-1636. doi: 10.1029/91WR00436

Cited by

  1. Spatial and Seasonal Variability of Soil Moisture Properties along Transect Line on a Forest Hillslope in the Cheong-Mi Catchment vol.17, pp.1, 2015, https://doi.org/10.5532/KJAFM.2015.17.1.45
  2. Distribution of Soil Water Storage at a Hillslope in Sulmachun Watershed vol.18, pp.2, 2016, https://doi.org/10.5532/KJAFM.2016.18.2.88
  3. Evaluation of MODIS-derived Evapotranspiration According to the Water Budget Analysis vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.831