• Title/Summary/Keyword: 수치모형모델

Search Result 558, Processing Time 0.024 seconds

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall (투수성 호안의 해수유통을 고려한 유동 수치모델링)

  • Bang, Ki-Young;Park, Sung Jin;Kim, Sun Ou;Cho, Chang Woo;Kim, Tae In;Song, Yong Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

The Comparison of Protective Effects of Adenosine Included Cardioplegia According to Adenosine Dosage (심정지액 속에 포함된 아데노신의 용량에 따른 심근보호 효과 비교)

  • 유경종;강면식;이교준;임상현;박한기;김종훈;조범구
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.837-844
    • /
    • 1998
  • Background: Adenosine is secreted by myocardial cells during myocardial ischemia or hypoxia. It has many beneficial effects on arrhythmias, myocardial ischemia, and reperfusion ischemia. Although many investigators have demonstrated that cardioplegia that includes adenosine shows protective effects in myocardial ischemia or reperfusion injury, reports of the optimal dose of adenosine in cardioplegic solutions vary. We reported the results of beneficial effects of single dosage(0.75 mg/Kg/min) adenosine by use of self-made Langendorff system. But it is uncertain that dosage was optimal. The objective of this study is to determine the optimal dose of adenosine in cardioplegic solutions. Material and Method: We used a self-made Langendorff system to evaluate the myocardial protective effect. Isolated rat hearts were subjected to 90 minutes of deep hypothermic arrest(15$^{\circ}C$) with modified St. Thomas' Hospital cardioplegia including adenosine. Myocardial adenosine levels were augmented during ischemia by providing exogenous adenosine in the cardioplegia. Three groups of hearts were studied: (1) group 1 (n=10) : adenosine - 0.5 mg/Kg/min, (2) group 2(n=10): adenosine -0.75 mg/Kg/min, (3) group 3 (n=10) : adenosine -1 mg/Kg/min. Result: Group 3 resulted in a significantly rapid arrest time of the heart beat(p<0.05) but significantly slow recovery time of the heart beat after reperfusion(p<0.05) compared to groups 1 and 2. Group 2 showed a better percentage of recovery(p<0.05) in systolic aortic pressure, aortic overflow volume, coronary flow volume, and cardiac output compared to groups 1 and 3. Group 1 showed a a better percentage of recovery(p<0.05) in the heart rate compared to the others. In biochemical study of drained reperfusates, CPK and lactic acid levels did not show significant differences in all of the groups. Conclusion: We concluded that group 2 [adenosine(0.75 mg/Kg/min) added to cardioplegia] has better recovery effects after reperfusion in myocardial ischemia and is the most appropriate dosage compared to group 1 and 3.

  • PDF

Kinematics and Structural Analysis for Optimization of an Electro-Hydraulic Sliding Deck Systems (전동 유압 슬라이딩 데크 시스템 최적화를 위한 기구학 및 구조해석)

  • Moon, Hyeok-Joo;Ryuh, Beom-Sahng;Oh, Young-Sup;Kim, Man-Jung;Lee, Jung-hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2017
  • Electro-hydraulic sliding deck systems have been developed to reduce the weight for the loading of an agricultural machine. The extension length of the sliding deck was calculated according to the bed's dump angle. The optimum thickness and material were determined using a large and heavy load at acceptable angles. In addition, the degrees of freedom were calculated to obtain the input/output relationship of the system. An equation was derived using a simplified model formula for the extended length of the sliding deck according to the bed's dump angle. Also, the advance length at the maximum and minimum angles of the system was determined using numerical analysis. A down-scaled model of the system was constructed and verified by experiments. The deck was simplified to determine the material and thickness of the sliding deck and for the selection of the two representative materials. The simplified model was tested in deformation tests and stress tests with different thicknesses and materials using a structure analysis program. The analysis results show that ATOS80 is the best among the two materials for reducing the weight of the system.

Features of Critical Tensile Stresses in Jointed Concrete Pavements under Environmental and Vehicle Loads (환경하중과 차량하중에 의한 줄눈콘크리트포장의 극한인장응력 특성 분석)

  • Kim, Seong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.449-456
    • /
    • 2007
  • This research was conducted to analyze the features of the critical tensile stresses at the top and bottom of the concrete slab in the jointed concrete pavement (JCP) when subjected to both the environmental and vehicle loads. First, the stress distribution in JCP was analyzed when the system was subjected to only the environmental loads or the vehicle loads by using the finite element model of JCP. Then, the stresses were analyzed when the system was subjected to the environmental and vehicle loads at the same time. From this study, it was found that the critical tensile stresses at the slab bottom under the vehicle loads were almost constant regardless of the loading positions once the loads were applied at the positions having some distance from the transverse joint. The critical tensile stresses at the slab bottom could be obtained using the model consisting of normal springs for underlying layers by adding the critical stresses due to the environmental loads and the vehicle loads for the curled-down slab, and by subtracting the critical stress due to the environmental loads from that due to the vehicle loads for the curled-up slab. The critical tensile stresses at the top of the slab could be obtained using the model consisting of tensionless springs for underlying layers by adding the critical stress due to the environmental loads and the stress at the middle of the slab under the vehicle loads applied at the joint for the curled-up slab. An alternative to obtain the critical stresses at the top of the slab for the curled-up slab was to use the critical stresses under only the environmental loads obtained from the model having normal springs for underlying layers.

Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration (송수신기 배열에 따른 굴절 주시 역산의 영향 인자 및 신뢰성 분석)

  • Lee, Donguk;Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.163-175
    • /
    • 2017
  • In land seismic exploration, irregular surface topography and weathering layer in near surface distorts the reflected signals of data. Therefore, typical land seismic data should be compensated for this distortion by static correction. To perform the static correction, near-surface velocity is required, which can be obtained by seismic refraction survey. However, land seismic data is often acquired in a limited form of geometry depending on the equipment availability, accessibility condition, and permission for the survey site. In this situation, refraction analysis should be performed using reflection data because it is impossible to acquire refraction-oriented data due to limited source and receiver geometry. In this study, we aimed to analyze the reliability of the results obtained by refraction traveltime tomography when using reflection data with a limited number of sources and receivers from irregular surface topography. By comparing the inversion result from irregular topography with that from flat surface, we found that the surface topography affects the reliability of the inversion results to some degree. We also found that the number of sources has little effect on the inversion results unless the number of sources are very small. On the other hand, we observed that velocity distortion occurred in the overlapped part of receiver arrays when using a limited number of receivers, and therefore suggested the size of the least overlapping ratio to avoid the velocity distortion. Finally, we performed numerical tests for the model which simulates the surface topography and acquisition geometry of the survey region and verified the reliability analysis of inversion results. We identified reliable areas and suspicious area of the inverted velocity model by applying the analysis results to field data.

A Study on Development of Assessment Model for Spatio-Temporal Changes in River Bed Using Numerical Models (수치모형을 이용한 하상변동 시공간 평가 기법 개발 연구)

  • Kim, Chul-Moon;Lee, Jeong-Ju;Choi, Su-Won;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.975-990
    • /
    • 2011
  • In this study, to develop an assessment method for spatio-temporal riverbed changes, a 1-dimensional model (HEC-RAS) and a 2-dimensional model (CCHE2D) were built and applied. As for the analysis of a riverbed's long-term change in a real stream, three new assessment methods were developed, which are called the "Sediment section cumulative curve", "Sediment section moment", and "Sediment probability distribution function." These methods were used to assess the characteristics of riverbed changes using a consistent valuation standard and to understand changes in quantities intuitively. From the results of this study, sediment characteristics of cross sections can be detected effectively by applying the "Sediment section cumulative curve" method to determine whether there is any sedimentation or erosion in total emission. The amount of sedimentation or erosion occurring in the right or left banks, which divided by center column, could be presented as one criterion by applying the "Sediment section moment" method. This approach could be utilized as an indicator for sediment predictions. Spatio-temporal sediment variables can be presented quantitatively by determining the mean and uncertain boundaries through the "Sediment probability distribution function", and finally, the results can be illustrated for each cross section to provide intuitive recognition.

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

The Development of VR based Application for Realistic Disaster Prevention Training (현실감 있는 재난재해 예방 교육을 위한 VR 기반 앱 개발)

  • Kim, Taehoon;Youn, Junhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.287-293
    • /
    • 2018
  • The Korean peninsula has been known as an area that is free of volcanic disasters. However, recent observations and research results of volcanoes in Far East Asia, including Baedu Mountain and Japanese volcanoes, show that the Korean peninsula is no longer a safe area from volcanic disasters. Since 2012, the Korean government has been developing an IT-based construction technology, VDRS (Volcanic Disaster Response System), for effective volcanic disaster response system. The main users of VDRS are public officers in central or local governments. However, most of them have little experience and knowledge about volcanic disasters. Therefore, it is essential to develop education contents and implement training on volcanic disaster response for effective response in a real disaster situation. In this paper, we deal with the development of a mobile application based on virtual reality (VR) for realistic volcanic disaster response training. The objectives of training are the delivery of knowledge and experience for volcanic disasters. First, VR contents were generated based on spatial information. A 3D model was constructed based on a Digital Elevation Model (DEM), and visualization models for meterological effects and various volcanic disaster diffusion effects were implemented for the VR contents. Second, the mobile application for the volcanic disaster response training was implemented. A 12-step story board is proposed for volcanic disaster experience. The application was developed with the Unity3D engine based on the proposed story board to deliver knowledge of various volcanic disasters (volcanic ash, pyroclastic flows, volcanic mudflow etc.). The results of this paper will be used for volcanic disaster response and prevention training and for more realistic training linked with augmented reality technology in the future.

A Study on Injection Nozzle and Internal Flow Velocity for Removing Air Bubbles inside the Sample Tanks during Hydraulic Rupture Test (수압파열시험 시 시료 탱크 내부 기포 제거를 위한 주입 노즐 및 내부 유속 연구)

  • Yeseung, Lee;Hyunseok, Yang;Woo-Chul, Jung;Dong Hoon, Lee;Man-Sik, Kong
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.9-15
    • /
    • 2022
  • In order to verify the durability of the high-pressure hydrogen tank in the operating pressure range, a hydraulic rupture test should be performed. However, if the bubbles generated by the initial injection process of water are attached to the inner wall of the tank and remain, a sudden pressure change of the bubbles during the rupture of the pressurized tank may cause shock and noise. Therefore, in this study, the flow velocity required to remove the bubbles remaining on the inner wall of the tank was predicted through simplified formulas, and the shape of the injection nozzle to maintain the flow velocity was determined based on the shape of the hydrogen tank for the hydrogen bus. In addition, a numerical model was developed to predict the change in flow velocity according to the inlet pressure, and an experiment was performed through a model tank to prove the validity of the prediction result. As a result of the experiment, the flow velocity near the tank wall was similar to the predicted value of the analysis model, and when the inlet pressure was 1.5 to 5.5 bar, the minimum size of the removable bubble was predicted to be about 2.2 to 4.6 mm.