• Title/Summary/Keyword: 수질반응계수

Search Result 57, Processing Time 0.029 seconds

The Treatment Characteristics of Intermittent Aeration and Conventional Activated Sludge Processes According to the Changes of Temperature and pH (온도 및 pH 변화에 따른 연속 및 간헐 포기식 활성슬러지법의 처리 특성)

  • Lee, Jeoung-Su;Lee, Tae-Kyoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1001-1009
    • /
    • 2000
  • This study is to find the utilization of intermittent aeration system, around S-COD, T-COD, SS, timewise changes of treatment performance, sludge conversion yield, changes of temperature and pH, etc. In consequence of this study, factors of temperature correction showed 1.052 on continuous aeration, and 1.056 on intermittent aeration which is more sensitive to temperature through a minute degree. Meanwhile, sludge conversion yield on intermittent aeration showed lower and more economical than that on continuous aeration. In case of changing pH, treatment water of both reactors worsened slightly in acid but improved in alkali. In general. considering the quality of effluent water, variation pH of effluent water, etc. the case of intermittent aeration was more favorable than that of continuous aeration.

  • PDF

Evaluation of Operational Options of Wastewater Treatment Using EQPS Models (EQPS 모델을 이용한 하수처리장 운전 평가)

  • Yoo, Hosik;Ahn, Seyoung
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2018
  • EQPS (Effluent Quality Prediction System, Dynamita, France) was applied to analyze the appropriateness of the design of a bioreactor in A sewage treatment plant. A sewage treatment plant was designed by setting the design concentration of the secondary clarifier effluent to total nitrogen and total phosphorus, 10 mg/L and 1.8 mg/L, respectively, in order to comply with the target water quality at the level of the hydrophilic water. The retention time of the 4-stage BNR reactor was 9.6 hours, which was 0.5 for the pre-anoxic tank, 1.0 for the anaerobic tank, 2.9 for the anoxic tank, and 5.2 hours for the aerobic tank. As a result of the modeling of the winter season, the retention time of the anaerobic tank was increased by 0.2 hours in order to satisfy the target water quality of the hydrophilic water level. The default coefficients of the one step nitrification denitrification model proposed by the software manufacturer were used to exclude distortion of the modeling results. Since the process modeling generally presents optimal conditions, the retention time of the 4-stage BNR should be increased to 9.8 hours considering the bioreactor margin. The accurate use of process modeling in the design stage of the sewage treatment plant is a way to ensure the stability of the treatment performance and efficiency after construction of the sewage treatment plant.

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.

Adsorption of Trace Metals on the Natural Amorphous Iron Oxyhydroxide from the Taebag Coal Mine Area (태백 탄전 지대의 비정질 철 수산화물에 대한 희귀원소의 흡착)

  • Yu, Jae-Young;Park, In-Kyu
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • To determine the apparent equilibrium constants, K$_{ad,app}$, for the adsorption reactions of trace metals on amorphous iron oxyhydroxide (AIO) in the Taebag coal mine area, time-adsorption and pH-adsorption experiments were performed for a selected bottom sediment mainly comprised of AIO from the study area. The results from the adsorption experiments indicate that most of the trace metals, except Pb, achieve equilibrium states with AIO and thus, the calculated K$_{ad,app}$ may represent the true apparent equilibrium constants. K$_{ad,app}$ and the stoichiometric coefficients of proton, x, of the adsorption reactions between the trace metals and AIO were respectively calculated from the intercepts and slopes of the regression lines of log($\Gamma$/ [M]$_{aq}$)against pH provided by pH-adsorption experiments. The calculated K$_{ad,app}$ this study has the values of the range from 10$^{-4.5}$ to 10$^{2.75}$ , which is much different from the reported values by other investigators for simple experimental systems. K$_{ad,app}$ of this study is more or less close but not exactly pertinent to the estimated values for the other natural systems. It indicates that K$_{ad,app}$ for the adsorption reactions in the aquatic system in the study area is unique and thus should be determined befor the adsorption modelling. The calculated x of this study has the values of the range from -0.3 to 0.7, which is also much different from what most geochemists generally accept. The discrepancy in x may be due to the competition among different kinds of ionic species on the adsorption site or simulataneous occurrence of different kinds of adsorption reactions. The results from this study should help construct an appropriate adsorption model for the aquatic systems polluted by the coal mine drainage in the Taebag area. With the constructed model, one can describe the concentration variations of trace metals due to the adsorption in the system, which is an essential part of the investigation on the water quality affected by coal mine drainage in the Taebag coal field.

  • PDF

초순수 제조공정 현황

  • 이창소
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.91-120
    • /
    • 1996
  • 경제발전과 더불어 산업의 많은 분야에서 순수 및 초순순의 사용이 증가하고 있으나, 환경오염에 의한 원수의 오염에 따라 순수 및 초순순제조의 장치비와 처리비용의 증가가 야기되고 있다. 현재 국내에는 화력, 원자력발전소를 비롯하여 열병합발전소, 석유화학공장, 제약회사, 전기 전자부품회사, 반도체회사 및 철강회사 등 많은 분야에서 순수 및 초순수 제조장치의 구성과 성능이 많은 차이를 나타내고 있다. 국내의 초순수 제조장치는 90% 이상이 이온교환수지를 사용하는 이온교환법과 UF, R/O System과 같은 Membrane을 사용하는 Membrane System을 병행하여 적용하고 있다. 국내 초순수처리 Plant에서는 통상 전처리 System과 1차 순수제조 System 및 초순수 System이 상호 연결되어 Plant가 구성 운영되고 있다. 전처리 System에는 응집침전, 여과 흡착, 살균 등이 적용되고 있으며 여과 System에 Membrane을 적용할 수 있으나 국내에서는 특별한 경우를 제외하고 대부분 전처리 여과 System에 Media Filter를 사용한다. 전처리 System도 순수처리 장치의 전처리로는 없어서는 안되는 System이지만 여기에는 전처리 System을 제외하고 국내에서 적용하고 있는 초순수처리 System의 공정현황과 각 System별 특징을 설명하고 있다. 초순순 System에는 요구 수질에 따라 다소 차이가 있지만 반도체 공업에서 사용되는 초순수 System이 이중 최고의 Grade로 반도체공업에서 적용되고 있는 System을 기준하였다. 특히 Membrane을 적용한 초순수제조 System이 증가하고 있어 R/O, ED, EDR, CDI, (EDI)와 같은 Membrane System의 특성과 원리를 검토하였다.대적으로 높은 산소확산계수와 물에 대해서는 낮은 투과도를 가져야 한다. 높은 산소확산계수는 반응을 빠르게 하는 잇점이 있으며 물에 대한 낮은 투과도는 센서내의 전해질 물질을 유지보호하는 역할을 한다. 분리막이 산소전극에 이용될 경우 높은 산소 확산계수 이외에도 적절한 기계적 강도, 열적 안정성 등이 요구된다. 몰입이 가능하여 임계치가 저하된 것으로 여겨진다. 또한 광학적 이득의 존재는 이 구조에 의한 극단파장 반도체 레이저다이오드의 실현 가능성을 나타내는 것이다.548 mL에 비해 통계학적으로 의의 있게 적었다(p<0.05). 결론: 관상동맥우회로 조성수술에서 전방온혈심정지액을 사용할 때 희석되지 많은 고농도 포타슘은 fliud overload와 수혈을 피하고 delivery kit를 사용하지 않음으로써 효과적이고 만족할 만한 심근보호 효과를 보였다.를 보였다.4주까지에서는 비교적 폐포는 정상적 구조를 유지하면서 부분적으로 소폐동맥 중막의 비후와 간질에 호산구 침윤의 소견이 특징적으로 관찰되었다. 결론: 분리 폐 관류는 정맥주입 방법에 비해 고농도의 cisplatin 투여로 인한 다른 장기에서의 농도 증가 없이 폐 조직에 약 50배 정도의 고농도 cisplatin을 투여할 수 있었으며, 또한 분리 폐 관류 시 cisplatin에 의한 직접적 폐 독성은 발견되지 않았다이 낮았으나 통계학적 의의는 없었다[10.0%(4/40) : 8.2%(20/244), p>0.05]. 결론: 비디오흉강경술에서 재발을 낮추기 위해 수술시 폐야 전체를 관찰하여 존재하는 폐기포를 놓치지 않는 것이 중요하며, 폐기포를 확인하지 못한 경우와 이차성 자연기흉에 대해서는 흉막유착술에 더 세심한 주의가 필요하다는 것을 확인하였다. 비디오흉강경수술은 통증이 적고, 입원기간이 짧고, 사회

  • PDF

Models of Wastewater Treatment by Rotating Discs (회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究))

  • Chung, Tai Hak;Park, Chung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 1982
  • A model of substrate removal by rotating discs has been developed for a better understanding of the process, and the performance of the system has been evaluated under steady and unsteady state. The model was constructed based upon mass transfer of the substrate from the bulk solution to the biofilm and a simultaneous removal of the substrate by the biomass. The model is composed of a few sets of differential equations representing mass balance within the elements of a liquid film and a biofilm, and in the bulk solution. Substrate removal efficiency of the process is largely dependent on a diffusion coefficient of the substrate within the biofilm and a maximum rate of substrate removal of the biomass. The efficiency is affected to a greater extent when the substrate concentration is low and the maximum substrate removal rate is high. The efficiency increases proportionally with increasing film depth when the biofilm is shallow, however, the rate of increase gradually decreases with an increase of the film depth. As the film reaches a limiting depth, the efficiency remains constant. Unlike the steady state, the effluent quality is affected by the tank volume under dynamic state. Increasing tank volume decreases peak concentration of the effluent under peak loading. Additional tank volume provides a buffer capacitya.gainst a peak loading and the holding tank behaves like an equalization tank.

  • PDF

Organic Phosphorus Decomposition Rates in the Youngsan River and the Sumjin River, Korea (국내 영산강과 섬진강의 유기인 분해속도)

  • Islam, Jahidul Mohammad;Kim, Bomchul;Han, Ji-sun;Kim, Jai-ku;Jung, Yukyong;Jung, Sungmin;Shin, Myoungsun;Park, Ju-hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.354-364
    • /
    • 2008
  • The variability in the phosphorus concentrations and the decomposition rates of organic phosphorus were measured in two rivers, the Youngsan River and the Sumjin River through four surveys in June, August and December of 2006 and February of 2007. Water samples were incubated for 20 days in a dark incubator and the change of forms of phosphorus (POP, DOP, DIP) were analyzed. By fitting the change to four types of models the decomposition rates of organic phosphorus were determined. The mean total organic phosphorus (TOP) decomposition rate coefficients in the Youngsan River and the Sumjin River were $0.036day^{-1}$ and $0.035day^{-1}$, respectively. In POP$\rightarrow$DIP model, the average decomposition rate coefficients in the Youngsan River and the Sumjin River were 0.049 and $0.035day^{-1}$, respectively. The average POP decomposition rate coefficients of POP$\rightarrow$DOP$\rightarrow$DIP model were $0.042day^{-1}$ and $0.038day^{-1}$ in the Youngsan River and Sumjin River respectively while the mean DOP decomposition rate coefficients were $0.255day^{-1}$ and $0.244day^{-1}$, respectively. In the Youngsan River, the mean POP$\rightarrow$DOP decomposition rate coefficient and POP$\rightarrow$DIP decomposition rate coefficient of POP$\rightarrow$DOP$\rightarrow$DIP, POP$\rightarrow$DIP model were $0.039day^{-1}$ and $0.007day^{-1}$, respectively. And in the Sumjin River, the above decomposition rate coefficients were $0.031day^{-1}$ and $0.004day^{-1}$, respectively. The decomposition rate coefficients measured in this study might be applicable for modeling of river water quality.

Modeling and Application of Chlorine Bulk Decay in Drinking Water Distribution System (배급수계통에서 잔류염소 감소 특성 및 적용연구)

  • Ahn, Jae-Chan;Park, Chang-Min;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.487-496
    • /
    • 2005
  • Chlorine bulk decay tests were carried out by bottle test under controlled conditions in a laboratory. Experiments were performed at different temperatures: $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and the water temperatures when samples were taken from the effluent just before entering to its distribution system. 38 bulk tests were performed for water of Al (water treatment plant), 4 bulk tests for A2 (large service reservoir), and A3(pumping station). Residual chlorine concentrations in the amber bottles were measured over time till about 100 hours and bulk decay coefficients were evaluated by assuming first-order, parallel first-order, second-order. and $n^{th}-order$ reaction. The $n^{th}-order$ coefficients were obtained using Fourth-order Runge-Kutta Method. A good-fit by the average coefficient of determination ($R^2$) was first-order ($R^2=0.90$) < parallel first-order ($R^2{_{fast}}=0.92$, $R^2{_{slow}}=0.95$) < second-order ($R^2=0.95$) < $n^{th}-order$ ($R^2=0.99$). But if fast reaction of parallel first-order bulk decay were applied to the effluent of large service reservoir with ca. 20 hours of travel time and slow reaction in the water distribution system following the first 20 hours, parallel first-order bulk decay would be best and easy for application of water quality modeling technique.

Comparative Analysis of Diversity Characteristics (γ-, α-, and β-diversity) of Biological Communities in the Korean Peninsula Estuaries (하구 순환 유지 여부에 따른 하구 주요 생물 군집별 다양성 특성 연구: 열린하구와 닫힌하구에서의 γ-, α- 및 β-다양성 비교)

  • Oh, Hye-Ji;Jang, Min-Ho;Kim, Jeong-Hui;Kim, Yong-Jae;Lim, Sung-Ho;Won, Doo-Hee;Moon, Jeong-Suk;Kwon, Soonhyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.84-98
    • /
    • 2022
  • Estuary is important in terms of biodiversity because it has the characteristics of transition waters, created by the mixing of fresh- and seawater. The estuarine water circulation provides a variety of habitats with different environments by inducing gradients in the chemical and physical environment, such as water quality and river bed structure, which are ultimately the main factors influencing biological community composition. If the water circulation is interrupted, the loss of brackish areas and the interception of migration of biological communities will lead to changes in the spatial distribution of biodiversity. In this study, among the sites covered by the Estuary Aquatic Ecosystem Health Assessment, we selected study sites where changes in biodiversity can be assessed by spatial gradient from the upper reaches of the river to the lower estuarine area. The α-, γ- and β-diversity of diatom, benthic macroinvertebrates, and fish communities were calculated, and they were divided into open and closed estuary data and compared to determine the trends in biodiversity variation due to estuarine circulation. As results, all communities showed higher γ-diversity at open estuary sites. The benthic macroinvertebrate community showed a clear difference between open and closed estuaries in β-diversity, consequently the estuarine transects were considered as a factor that decreases spatial heterogeneity of their diversity among sites. The biodiversity trends analyzed in this study will be used to identify estuaries with low γ- and β-diversity by community, providing a useful resource for further mornitoring and management to maintain estuarine health.