• Title/Summary/Keyword: 수질경향

Search Result 610, Processing Time 0.036 seconds

Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 신평천 인공습지의 수생태학적 특성 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Chang, Nam-Ik;Seong, Hwan-Hoo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2011
  • To evaluate the aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating nonpoint source pollution, the removal rates of nutrients in water, the total amounts of T-N and T-P uptakes by water plants, and chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD, COD, SS, T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were 14%, 6%, 18%, 24%, and 10%, respectively. The maximum amount of T-N uptake by water plants in August was $813mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $1,172mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. The maximum amount of T-P uptake by water plants in August was $247mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $359mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. Organic matter, T-N, and T-P contents in sediments were high in the order of $1^{st}$ bed > $2^{nd}$ bed > $3^{rd}$ bed. Microbial biomass C/N/P ratios in sediments in $1^{st}$, $2^{nd}$, and $3^{rd}$ were 78~110/3~6/1, 73~204/1~6/1, and 106~169/1~6/1, respectively.

Study on improvement of USLE P factor considering topography and cultivation method (지형 및 경작 방법을 반영한 범용토양유실량 산정공식 보전관리 인자 개선 연구)

  • Sung, Yunsoo;Lee, Gwanjae;Lee, Gwanjae;Han, Jeongho;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.163-172
    • /
    • 2019
  • The USLE P factor is a factor that varies depending on how croplands are managed and cultivated. Previous studies tend to overestimate the amount of soil loss because the factor was estimated from the slope of the watershed rather than the estimate of each cultivated land. In addition, the accuracy of estimating the soil loss is decreasing due to the fact that the factor is calculated without considering various conditions of cultivated land defined by Wishmeier and Smith. In order to overcome these problems, the Ministry of Environment (MOE) has proposed to establish the topsoil notification and calculate the P factor according to the cultivation methods (e.g., tillage system, support practice). However, it is required to apply the conditions proposed in the United States to domestic circumstances as it is causing uncertainties. Thus, this study selected the watersheds where soil loss was serious (Haean, Jaun, Banbyeoncheon), measured the actual slopes and slope lengths, and examined the crop, tillage systems, and support practice for each cultivated land. The P factors were recalculated considering the actual conditions of cultivated land and compared to the factors proposed by the previous studies (MOE). As the result of the study, the P factors calculated based on the previous studies were 0.8 ~ 1.0 in three watersheds. On the other hand, it is confirmed that there is a significant difference between the factors notified by MOE and estimated by reflecting the topography and cultivation methods in this study. Therefore, it is considered that the research for developing the cultivation conditions to calculate the P factor suitable for the domestic environment should be continuously carried out.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju) (영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구)

  • Oh, Hye-Ji;Kim, Dokyun;Choi, Jisoo;Chae, Yeon-Ji;Oh, Jong Min;Shin, Kyung-Hoon;Choi, Kwangsoon;Kim, Dong-Kyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.346-362
    • /
    • 2021
  • A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.

A study on the rainfall management target considering inter-event time definition (IETD) (무강우 지속시간(IETD)을 고려한 빗물관리 목표량 설정 방안 연구)

  • Baek, Jongseok;Kim, Jaemoon;Park, Jaerock;Lim, Kyoungmo;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.603-611
    • /
    • 2022
  • In urban areas, the impermeable area continues to increase due to urbanization, which interferes with the surface penetrating and infiltrating of rainwater, causing most rainwater runoff to the surface, deepening the distortion of water circulation. Distortion of water circulation affects not only flood disasters caused by rainfall and runoff, but also various aspects such as dry stream phenomenon, deterioration of water quality, and destruction of ecosystem balance, and the Ministry of Environment strongly recommends the use of Low Impact development (LID) techniques. In order to apply the LID technique, it is necessary to set a rainwater management target to handle the increase in outflow after the development of the target site, and the current standard sets the rainwater management target using the 10-year daily rainfall. In this study, the difference from the current standards was analyzed through statistical analysis and classification of independent rainfall ideas using inter-event time definition (IETD) in setting the target amount of rainwater management to improve water circulation. Using 30-year rainfall data from 1991 to 2020, methods such as autocorrelation coefficient (AC) analysis, variation coefficient (VC) analysis, and annual average number of rainfall event (NRE) analysis were applied, and IETD was selected according to the target rainfall period. The more samples the population had, the more IETD tended to increase. In addition, by analyzing the duration and time distribution of independent rainfall according to the IETD, a plan was proposed to calculate the standard design rainfall according to the rainwater management target amount. Therefore, it is expected that it will be possible to set an improved rainwater management target amount if sufficient samples of independent rainfall ideas are used through the selection of IETD as in this study.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF