• Title/Summary/Keyword: 수직 히스토그램

Search Result 81, Processing Time 0.025 seconds

Wavelet-Based Edge Detection Using Local Histogram Analysis in Images (영상에서 웨이블렛 기반 로컬 히스토그램 분석을 이용한 에지검출)

  • Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.359-371
    • /
    • 2011
  • Edge detection in images is an important step in image segmentation and object recognition as preprocessing for image processing. This paper presents a new edge detection using local histogram analysis based on wavelet transform. In this work, the wavelet transform uses three components (horizontal, vertical and diagonal) to find the magnitude of the gradient vector, instead of the conventional approach in which tw components are used. We compare the magnitude of the gradient vector with the threshold that is obtained from a local histogram analysis to conclude that an edge is present or not. Some experimental results for our edge detector with a Sobel, Canny, Scale Multiplication, and Mallat edge detectors on sample images are given and the performances of these edge detectors are compared in terms of quantitative and qualitative measures. Our detector performs better than the other wavelet-based detectors such as Scale Multiplication and Mallat detectors. Our edge detector also preserves a good performance even if the Sobel and Canny detector are sharply low when the images are highly corrupted.

A High Capacity Reversible Watermarking Using Histogram Shifting (히스토그램 이동을 이용한 고용량 리버서블 워터마킹)

  • Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • Reversible watermarking hides some information in a digital image in such a way that an authorized party could decode the hidden information and also restore the image to its original state. In this paper, a high capacity reversible watermarking method using histogram shifting is proposed. In order to increase embedding capacity, the proposed method divides the image into $2{\times}2$ blocks and uses a paring(horizontal, vertical, diagonal) inside each block, then finds a maximum embedding bin which has the most frequent difference values among the parings. Also, the proposed method removes the overflow and underflow by using location map which including the maximum embedding bin and increases the embedding capacity by embedding iteratively. The experimental results show that the proposed method provides a high embedding capacity and good visual quality compared with the conventional reversible watermarking methods.

Rotation-invariant Object Categorization using Bag-of-features with Angular Pyramid (각도 피라미드를 이용한 Bag-of-features 를 통한 회전에 강한 물체 인식)

  • Kwon, Bojun;Kim, Seona;Lee, Kyong Joon;Yun, Il Dong;Lee, Sang Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.449-450
    • /
    • 2011
  • 본 논문에서는 영상에서의 물체 인식에 주로 사용되었던 공간 피라미드를 변형시킨 각도 피라미드를 이용한 bag-of-features 방법으로 회전 변화에도 강한 물체 인식에도 적용할 수 있도록 한다. 기존의 공간 피라미드에서 수직의 격자 모양으로 영상을 나누었던 것에 비해 각도 피라미드는 영상의 중심을 기준으로 동일한 각도로 영상을 분할하여 피라미드로 만든다. 각 영역 안에서 특징들의 히스토그램으로 영상을 표현하고 영상간의 유사도는 각도 피라미드를 단계별로 순환적 자리옮김을 통해 회전시켜가며 히스토그램 교집합을 구하여 측정한다. 이 방법을 Caltech-101 데이터베이스에 적용해본 결과 회전 변환을 준 테스트 영상에 대해 기존의 공간 피라미드를 사용한 방법에 비해 높은 성능을 보이는 것을 확인하였다. 따라서 이 방법을 통하여 다양한 상황의 일반적인 물체 분류할 수 있을 것으로 기대한다.

  • PDF

Moving Object Detection and Tracking using Edge Information and Histogram Analysis (에지 정보와 히스토그램 분석에 의한 움직이는 물체 검출 및 추적)

  • Goo, Sang-Hoon;Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.579-582
    • /
    • 2003
  • 본 논문에서는 동영상에서 에지 정보와 히스토그램 분석을 이용하여 실시간으로 움직이는 물체를 검출하고 추적하는 방법을 제안하였다. 물체 검출에서는 먼저, 입력영상에 대하여 형태에 관한 정보를 그대로 유지하면서 자료의 양을 줄일 수 있는 에지(Edge)를 추출한다. 추출된 에지 영상에 차연산과 이진화를 수행하여 물체를 검출하고, 검출된 물체 영역은 이진 변환밀도에 대한 수평 누적값의 합을 수평 수직 최대 누적값을 더한 값으로 나눈 임계값으로 구한다. 물체 추적에서는 현재 프레임에서 검출된 물체와 이전 프레임에서 검출된 물체와의 유사성을 비교하여 추적한다. 실험결과 물체 검출속도를 개선시켰고, 실시간으로 물체를 추적할 수 있었으며, 국부적인 움직임까지도 추적할 수 있었다.

  • PDF

Drowsiness Detection using Eye-blink Patterns (눈 깜박임 패턴을 이용한 졸음 검출)

  • Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, a novel drowsiness detection algorithm using eye-blink pattern is proposed. The proposed drowsiness detection model using finite automata makes it easy to detect eye-blink, drowsiness and sleep by checking the number of input symbols standing for closed eye state only. Also it increases the accuracy by taking vertical projection histogram after locating the eye region using the feature of horizontal projection histogram, and minimizes the external effects such as eyebrows or black-framed glasses. Experimental results in eye-blinks detection using the JZU eye-blink database show that our approach achieves more than 93% precision and high performance.

Content-based Image Retrieval using Color Ratio and Moment of Object Region (객체영역의 컬러비와 모멘트를 이용한 내용기반 영상검색)

  • Kim, Eun-Kyong;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.501-508
    • /
    • 2002
  • In this paper, we propose a content-based image retrieval using the color ratio and moment of object region. We acquire an optimal spatial information by the region splitting that utilizes horizontal-vertical projection and dominant color. It is based on hypothesis that an object locates in the center of image. We use color ratio and moment as feature informations. Those are extracted from the splitted regions and have the invariant property for various transformation, and besides, similarity measure utilizes a modified histogram intersection to acquire correlation information between bins in a color histogram. In experimental results, the proposed method shows more flexible and efficient performance than existing methods based on region splitting.

Hangeul detection method based on histogram and character structure in natural image (다양한 배경에서 히스토그램과 한글의 구조적 특징을 이용한 문자 검출 방법)

  • Pyo, Sung-Kook;Park, Young-Soo;Lee, Gang Seung;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, we proposed a Hangeul detection method using structural features of histogram, consonant, and vowel to solve the problem of Hangul which is separated and detected consonant and vowel The proposed method removes background by using DoG (Difference of Gaussian) to remove unnecessary noise in Hangul detection process. In the image with the background removed, we converted it to a binarized image using a cumulative histogram. Then, the horizontal position histogram was used to find the position of the character string, and character combination was performed using the vertical histogram in the found character image. However, words with a consonant vowel such as '가', '라' and '귀' are combined using a structural characteristic of characters because they are difficult to combine into one character. In this experiment, an image composed of alphabets with various backgrounds, an image composed of Korean characters, and an image mixed with alphabets and Hangul were tested. The detection rate of the proposed method is about 2% lower than that of the K-means and MSER character detection method, but it is about 5% higher than that of the character detection method including Hangul.

Identifiers Extraction of Container Image using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 컨테이너 영상의 식별자 추출)

  • 주이환;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.238-242
    • /
    • 2004
  • 운송 컨테이너의 식별자를 추출하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 히스토그램 방법과 윤곽선 추적 알고리즘을 각각 이용하여 개별 식별자를 추출한다. 실제 컨테이너 영상을 대상으로 실험 결과, 제안된 컨테이너 식별자 추출 방법이 다양한 컨테이너 영상에 대해 효율적인 것을 확인하였다.

  • PDF

Fast Scene Change Detection Using Macro Block Information and Spatio-temporal Histogram (매크로 블록 정보와 시공간 히스토그램을 이용한 빠른 장면전환검출)

  • Jin, Ju-Kyong;Cho, Ju-Hee;Jeong, Jae-Hyup;Jeong, Dong-Suk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.141-148
    • /
    • 2011
  • Most of the previous works on scene change detection algorithm focus on the detection of abrupt rather than gradual changes. In general, gradual scene change detection algorithms require heavy computation. Some of those approaches don't consider the error factors such as flashlights, camera or object movements, and special effects. Many scenes change detection algorithms based on the histogram show better performances than other approaches, but they have computation load problem. In this paper, we proposed a scene change detection algorithm with fast and accurate performance using the vertical and horizontal blocked slice images and their macro block informations. We apply graph cut partitioning algorithm for clustering and partitioning of video sequence using generated spatio-temporal histogram. When making spatio-temporal histogram, we only use the central block on vertical and horizontal direction for performance improvement. To detect camera and object movement as well as various special effects accurately, we utilize the motion vector and type information of the macro block.

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.