• Title/Summary/Keyword: 수직 항력

Search Result 77, Processing Time 0.026 seconds

Viscous Mean Drift Forces on a Floating Vertical Cylinder in Waves and Currents (파랑과 조류에 의한 부유식 수직 실린더 구조물에 작용하는 평균 점성 표류력)

  • Shin, Dong Min;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.503-509
    • /
    • 2020
  • In offshore floating structures, the viscous mean drift force due to drag is considered a design part that has not been considered until recently. In this paper, an analytical solution for the viscous mean drift forces on a floating vertical cylinder considering the waves and currents was obtained. The area was considered by dividing it into a splash zone above the free surface and a submerged zone below the free surface. In the case of waves, only the splash zone was considered; in the case of waves and currents, equations were obtained in both the splash zone and the submerged zone. The RAO results of previous studies were used to compare the calculated results with the drift forces acting on the fixed cylinder. Except for the case in only waves in the splash zone, the viscous mean drift force acting on the floating cylinder was larger than the drift force acting on the relatively fixed cylinder in most frequencies. In particular, the increase was greater when the currents were considered to be more important. Therefore, these results provide the inference for the viscous drift force due to drag in the design of floating offshore structures.

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

A Wind Tunnel Study on the Static Stability Characteristics of Light Sport Aircraft (스포츠급 경항공기의 정안정 특성 풍동시험 연구)

  • Kim, Jong-Bum;Jang, Young-Il;Kwon, Ky-Beom;Chung, Hyoung-Seog;Cho, Hwan-Kee;Kim, Sang-Ho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.711-717
    • /
    • 2012
  • During the conceptual design phase of a light sport aircraft, the wind tunnel tests were conducted to investigate the static stability of newly-designed configuration. The 1/5 scale-down wind tunnel model consisted of fuselage, main wing, vertical tail and horizontal tail. The main wing and tails were able to be attached or detached from the fuselage. The aerodynamic forces and moments acting on the 6 different configurations compounding each component were measured by using the internal balance system and their static stability derivatives were derived. With these experimental data, the baseline lift and drag characteristics as well as the effects of each component to the longitudinal, directional and lateral static stability were quantitatively analyzed.

Design and Test of Lateral/Directional Control Law of a Tailless UAV Using Spoilers (스포일러를 이용한 무미익 항공기의 횡방향축 제어기설계 및 시험)

  • Hong, Jin-sung;Hwang, Sun-yu;Lee, Kwang-hyun;Hur, Gi-bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.422-428
    • /
    • 2019
  • A tailless or Blended-Wing-Body(BWB) shaped configuration is highlighted for UCAV with low RCS characteristics. The BWB configuration is characterized by its directional static instability and low controllability. To control the directional movement of the BWB configured vehicle, directional thrust vectoring equipment or drag rudder typed control surfaces which utilize the drag differences of the wing can be considered. This paper deals with a BWB shaped configuration using a spoiler and describes the lateral-directional aerodynamic characteristics of the vehicle. In addition, it is shwon that the lateral-directional motion can be controlled effectively by using the classical PI control structure. This control law is verified by flight test and showed adequate for the tailless BWB shaped UAV.

Study on numerical analysis of driftwood generation and behavior by tsunami flow (쓰나미에 의한 유목의 발생과 거동의 수치해석적 연구)

  • Kang, Tae Un;Jang, Chang-Lae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.66-66
    • /
    • 2021
  • 2011년에 일본 도호쿠 지방 태평양 해역에서 규모 9.0의 지진이 발생하여 거대한 쓰나미가 일본 본토 해안을 침수시켰다. 이로 인해, 정확한 피해규모가 파악되기 어려울 정도로 막대한 인명과 재산피해를 입게 되었다. 센다이지역의 경우 쓰나미로 인해 해안에 위치한 약 3.8 평방킬로미터의 방풍림이 모두 전복되었고 일부는 유목이 되어 쓰나미와 함께 내륙으로 흘러들어가 곳곳에 퇴적되어 농지를 훼손하고 가옥에 피해를 주었다. 따라서, 본 연구는 유목의 발생과 흐름에 따른 거동을 수치적으로 분석하여, 폭우나 쓰나미와 같은 거대흐름과 산지와 방풍림 등에서 발생하는 유목의 발생과 거동과정을 예측하고, 흐름과 유목 거동에 따른 피해지역을 선별할 수 있는 방법을 구축하기 위한 초기단계로서, 이를 위해 유목의 발생과정의 역학적 모델링을 수치모듈에 적용하였고 이를 활용하여 수치모의를 수행하였다. 흐름분석을 위해 쓰인 모형은 홍수범람 모형인 Nays2D Flood 이며 천수방정식을 기본으로 한다. 쓰나미의 흐름은 해안가의 방풍림지역을 상류단 경계조건으로 하여 발생 당시 관측된 수심변화를 본 모형의 상류단 경계조건으로 입력하였다. 상류단 경계조건에서 쓰나미의 유속은 수심에 따른 파속으로 계산하였다. 본 연구에서는 또한 유목의 발생과 흐름거동을 기존에 개발된 입자법 기반의 유목동역학모형을 활용하여 수치적으로 모델링 하였다. 유목은 유연성이 없는 원주형 강체로 가정하였고 초기설정으로는, 방풍림지역에 30만개의 유목이 하상의 수직방향으로 배치되어있는 것으로 가정하였다. 여기서, 본 연구에서는 쓰나미가 발생하면 흐름에 따른 항력으로 인해 수직방향으로 배치된 유목이 부러지며, 흐름과 함께 흘러가는 현상을 모델링하였다. 본 연구는 폭우나 쓰나미와 같은 거대흐름으로 인해 발생할 수 있는 유송잡물과 유목의 거동을 예측분석하는 기초연구자료로 활용될 수 있으며, 더 나아가 유목의 발생과정까지 수치적으로 재현하는 모델링을 수행하였기 추후에, 산지와 하천에서 발생할 수 있는 유송잡물의 발생과 연행 과정을 보다 세부적으로 예측할 수 있는 기초방법론으로 쓰일 수 있을 것으로 판단된다.

  • PDF

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

A Study on the Development of Circular Hub type offshore wind power generation (Circular Hub타입 해상용 풍력발전기 개발에 관한 연구)

  • Lee, Byeongseong;Kim, Namhun;Oh, Jinseok;Kim, Donghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.2-183.2
    • /
    • 2010
  • 본 개발에서의 해상용 풍력발전기는 크게 허브와 블레이드를 합한 상부 구조물, 전기 발전기와 연결 조인트의 중간구조물, 각종 제어 장치가 들어있는 제어박스로 나누어진다. 상부 구조물은 Circular Hub 타입의 Darrieus 형상으로 양력(lift)을 이용한 회전력이 발생하며, Circular Hub 타입은 기존의 허브와 블레이드를 연결하여주는 암(arm)에 의해 유발되는 항력토크를 최소화 하기 위한 신개념 형상설계가 이루어 졌으며, 저속에서 우수한 회전특성을 가진다. 이는 바람을 받아 기계적 에너지로 전환 하는 역할을 하며, 풍력발전기의 성능에 직접적인 영향을 미친다. 중간구조물의 전기발전기는, 상부에서 발생된 기계적 에너지를 이용하여 전기적 에너지로 전환 하는 역할을 수행한다. 이렇게 전환된 전기적 에너지는 하부의 제어박스를 거쳐서 해상용 부이(buoy)의 하단에 위치한 베터리 뱅크로 전달, 저장되어 부이에서 쓰이는 전력을 충당하게 된다. 한편 본 개발은 풍력발전기의 공력하중 해석과 로터블레이드의 설계, 풍력발전기의 구조, 진동해석, MPPT 제어컨트롤러와 Breaking controller, 풍동 및 차량시험을 통한 성능평가 및 분석 등의 순으로 개발을 수행하였다.

  • PDF

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Experimental Study on the Flow-Induced Vibration of Inclinced Circular Cylinders in Uniform Flow (균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성 연구)

  • Jung, Tae-Young;Hong, Sup;Moon, Seok-Jun;Ham, Il-Bae;Lee, Hun-Gon
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.303-311
    • /
    • 1995
  • Tests on flow-induced vibration of inclined cylinders in uniform flow were performed in the cavitation tunnel at the Korea Instituteof Machinery and Metals. The test program was intended to investigate flow-induced vibration characteristic of the cylinders with three different inclined angles of 10$^\circ$, 20$^\circ$ and 30$^\circ$ and to estimate the fluid force coefficients acting on the cylinders. Important observations are as follows: 1) Numal drag is dominant compared with viscous drag for the inclined angle over 20.deg. and it has the value from 1.7 to 2.0 as was observed by other researchers. 2) Lift force coefficient has large value at the lock-in range determined by 4$\Theta/f_nD$<8. Measured maximum lift force coefficients at the inclined angle of 30.$^\circ$ and 20$^\circ$ were 0.9 and 0.4 respectively.

  • PDF

Aerodynamic Analysis of 18% Thick Airfoil(Case 1) with Computational Fluid Dynamics (전산해석을 활용한 두께비 18%익형(Case1)의 공력특성 분석)

  • Kim, Cheolwan;Lee, Yung-gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.212-216
    • /
    • 2017
  • Aerodynamic analysis for the airfoil, KARI-11-180 having 18% thickness ratio, was performed with CFD techniques. The boundary layer grid was generated by projecting the wall grid normally and fine grid was placed behind the trailing edge to capture the wake accurately. The distance to the far boundary is 100 chords and the flow condition is same as the wind tunnel test condition. Transition SST and DES turbulence models were utilized for accurate prediction of the transiton point. The predicted lift is higher but the drag is predicted lower than the wind tunnel test. 3-dimensional results with airfoil models of which aspect ratio were 2 and 5 were compared with 2-dimensional results.