• Title/Summary/Keyword: 수직 이착륙

Search Result 132, Processing Time 0.025 seconds

A Study on Yaw Control of Multi-Fan Hovering with SRFIMF (SRFIMF를 이용한 멀티팬 부상기의 YAW제어에 관한 연구)

  • 박선국;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.361-370
    • /
    • 1992
  • A controller of the hovering VTOL aircraft with four fan is constructed by SRFIMF(State Rate Feedback Implicit Model-Following)theory, in which feedback state are angle acceleration, angle velocity and angle position of the aircraft during hover With yaw control of the system, characteristics of the hovering aircraft can be analyzed by changing states feedback gain and sponse provides robust stable hovering system.

  • PDF

The design and production of the Vertical takeoff and landing aircraft (수직이착륙기 설계 및 제작)

  • Lee, Woong-hee;Park, Yong-su;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.19-24
    • /
    • 2008
  • In this study gives detail on the composition and process of Quad-rotor blade Vehicle. It may seem simple but we have many trouble because of many subtleties. Unless designed carefully, it is very difficult to control of stability by reason of disturbances in the air and unbalance in the motor. We want to have a more stable output so add other electronics supplement, and change the battery in oder to increasing thrust. It cannot be done quickly, nor cheaply because it is more difficult than first ideas that control of Quad-rotor. But we complete manufacture of basically controllable vertical takeoff and landing aircraft.

  • PDF

Spherical Flying Machine Development (구형무인비행체 개발)

  • Kim, Jin-Won;Ryu, Dong-Young;Cho, Dong-Hyun;Moon, Sung-Tae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.158-163
    • /
    • 2012
  • Spherical Flying Machine, unlike conventional aircraft structure, is protected by circular frame. This battery-operated propeller machine, which can do vertical take-off and hovering, is under development for indoor and outdoor operation and dubbed as Flying Ball in KARI. In the future, autonomous air vehicle will be constructed for reconnaissance and surveillance application.

FLOW SIMULATION AROUND DUCTED-PROP (덕티드-프롭 유동해석)

  • Choi, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.264-271
    • /
    • 2007
  • The flow simulations around ducted-prop of tilt-duct aircraft were conducted in this study. For the investigation of aerodynamic characteristics of various configurations of duct, the axisymmetric flow calculation method combined with actuator disk model for prop were used. The rapid two-dimensional calculation and fast grid generation enable aerodynamic analysis for various duct configurations in a very short time and anticipated to active role in optimal configuration design of duct exposed to various flight modes. For the case of angle of attack or tilt angle, the three dimensional flow calculation is conducted using the three dimensional grid simply generated by just revolving the axisymmetric grid around center axis. Through the three dimensional calculation around duct, the aerodynamic effectiveness of duct as a lifting surface in airplane mode was investigated. The flow calculations around the control vane (wing) installed in the rear section of duct were conducted The aerodynamic data of wing were compared with the data of the ducts to evaluate the aerodynamic effectiveness of ducts.

  • PDF

A Study on Design Method and Control of Blimp-4 Rotor Craft (Blimp형 4 Rotor Craft의 설계방법에 관한 연구)

  • 박윤수;이호길;김진영;원대희;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.996-1000
    • /
    • 2003
  • In this paper, Fly robot with electric power, a kind of Unmanned aerial vehicle (UAV), is considered as an autonomous hovering platform, capable of vertical lift-off, landing and stationary hovering. This aircraft has four rotor and DC motors of electrical Power, which is capable of omni-direction for indoor application. In the earlier days of vertical flight experimentation developers looked at the intuitively easy control functionality of 4 rotor designs. But we need to obtain design method of suitable structures and adequate components because the existing prototypes of 4 rotor-craft don't analyze the propeller, motor characteristic and propose a methodology to optimize this system. In this paper, we will show the new 4 rotor craft with blimp, analyze design and manufacturing method of 4 rotor craft system. Also we prove propriety of our design and manufacturing method by being based on thrust and motor experiment.

  • PDF

Dynamic Modeling and Robust Hovering Control of a Quadrotor VTOL Aircraft (4개의 회전날개를 갖는 수직이착륙 비행체의 모델링과 강인 정지비행 제어)

  • Kim, Jin-Hyun;Kang, Min-Sung;Park, Sang-Deok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1260-1265
    • /
    • 2008
  • This study deals with modeling and flight control of quadrotor type (QRT) unmanned aerial vehicles (UAVs). Rigorous dynamic model of a QRT UAV is obtained both in reference and body frame coordinate systems. A disturbance observer (DOB) based controller using the derived dynamic models is also proposed for robust hovering control. The control input induced by DOB is helpful to use simple equations of motion satisfying accurate derived dynamics. The experimental results show the performance of the proposed control algorithm.

틸트로터 설계특성 및 주요 사이징 변수에 대한 요구

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.277-286
    • /
    • 2004
  • In this study, summary of past tilt-rotor concept development presented, and based on that, major pros and cons of tilt-rotor technology compared to other air-vehicle concept was presented. Also presented were major design features, considerations and sizing constraints of tilt-rotor configuration implemented to the development of Smart UAV. It is hoped that this paper be served to understand the tilt-rotor air-vehicle design and development.

  • PDF

Synthetic Overview on the Dispute about Tiltrotor Technology and Flight Safety (틸트로터 비행체 개념에 대한 기술적 논란 및 비행안전성 논란 분석)

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.254-262
    • /
    • 2008
  • Several decades have passed since tiltrotor technology became a hot issue of debates between aircraft majors, policy maker and mass-media. Although most of those subjects have been officially probed or answered in objective way, biased articles or argues related with the adequacy of this technology still prevail in the way of tilt-rotor development programs, which are totally irrelevant and out-dated. This paper aims to help understanding on those issues in technically balanced manner and the cases of flight test mishaps.

  • PDF

Development Status and Economic Efficiency of PAV (PAV의 개발현황과 경제적 효율성 비교)

  • Song, Jaedo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • PAV is considered to improve quality of life and standards of living, improvement of which was caused by automobile hundred years ago. Comparative economic efficiency of PAVs is measured to compare each PAV. Specification and sales price of the PAVs are open to the public. BlackFly, Transition and Aeromobil 3.0 have competitive power in flying range, purchasing cost, and operational cost. Lift & cruise configuration and vectored thrust configuration PAVs are designed by many companies nowadays, and BlackFly which can be considered to be lift & cruise configuration is one of the most efficient PAVs. High battery price does not help multi-copter shaped PAVs to have economic efficiency. Aerodynamic wing, eVTOL, and low sale price are needed for PAVs to ride a wave of public interest as a new personal mobility. Under the conditions, the PAV can fly at downtown and can be purchased by people at large. Popularization of PAV could follow in the 100 years old footsteps of automobile.

A Study on the Prevention of Bird Collision in UAM (UAM 조류 충돌 방지대책 수립에 관한 연구)

  • Daniel Kim;Hee-duk Cho;Seung-woo Lee;Jae-woo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.338-347
    • /
    • 2024
  • This paper deals with the study of bird collision avoidance measures in UAM operations from an operator's perspective. Urban air traffic is defined as a next-generation transportation system that uses environmentally friendly electric vertical take-off and landing (eVTOL) aircraft to provide transportation services between key points within and around urban centers. For the successful establishment of the UAM industry, it is necessary to ensure safety issues that determine public acceptance. Among the hazards that can occur in aviation operations, preventing bird collisions in urban environments is a measure that can greatly secure operational safety and public acceptance. In addition to physical measures, procedural control measures are required to prevent bird strikes. In order to ensure the safety of UAM operations, this study aims to provide a direction for the establishment of UAM bird collision prevention measures by categorizing bird collision prevention measures into physical and procedural methods and flight sections such as takeoff, landing, and corridor sections. Through this, we hope to contribute to the improvement of the safety of the urban air traffic operation system.