• Title/Summary/Keyword: 수직축 조류발전 터빈

Search Result 19, Processing Time 0.023 seconds

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (II) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (II))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-78
    • /
    • 2013
  • CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star-CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model turbine was used, especially when the Reynolds number was lower than $10^5$. The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of $0^{\circ}$, and the torque pulsation ratio was minimized when the blade covered $360^{\circ}$ for the case of a turbine with a twisting angle of $120^{\circ}$.

Investigation on Performance Characteristics of Dual Vertical Axis Turbine of 100 kW Class Tidal Energy Convertor (100 kW급 조류발전용 듀얼 수직축 터빈의 성능특성 연구)

  • HEO, MAN-WOONG;KIM, DONG-HWAN;PARK, JIN-SOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.151-159
    • /
    • 2020
  • This study aimed to investigate the performance characteristics of vertical axis turbine of tidal energy convertor. Three-dimensional Reynolds-averaged Navier-Stokes equation with shear stress transport turbulence model has been solved to analyze the fluid flow of the vertical axis turbine. The hexahedral grids have been used to construct the computational domain and the grid dependency test has been performed to find the optimum grid system. Four steps have been carried out to design the vertical axis turbine of the 100 kW class tidal energy convertor.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.

Development of Vibration Analysis Program for Anti-resonance Design of Vertical-axis Tidal Current Turbine (조류발전용 수직축 터빈의 공진 회피 설계를 위한 프로그램 개발)

  • Bae, Jae-Han;Seong, Hye-Min;Cho, Dae-Seung;Kim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.336-341
    • /
    • 2012
  • The vertical-axis tidal current turbine (VAT) consisting of blades, struts to support blades, shaft, generator and so forth requires anti-resonance design against fluid fluctuation forces generated on blades to ensure its stable operation. In this study, a free vibration analysis program based on the finite element method is developed for efficient anti-resonance design of VAT in the preliminary design stage. In the finite element modeling, the VAT structure components are regarded as beam elements. Added masses due to the fluid and structure interaction of VAT evaluated by empirical formulas are considered as lumped mass elements. In addition, input parameters required for the analysis can be automatically prepared from the principal dimensions of VAT to make anti-resonance design more convenient. The validity of applied methods is verified by the comparison of the numerical results obtained from MSC/Nastran and the developed program for two VAT models.

  • PDF

Vertical Axis Tidal Turbine Design and CFD hydrodynamic Analysis (CFD를 이용한 수직축 터빈 설계 및 유동특성 분석)

  • Jo, Chulhee;Ko, Kwangoh;Lee, Junho;Rho, Yuho;Lee, Kanghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Due to the global warming, the need to secure the alternative resources has become more important worldwide. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable sites for the application of TCP(Tidal current power) in Korea. Not only from the current produced from the high tidal range, but also it can be widely applied to the offshore jetties and piers. The VAT(Vertical axis turbine) system could be very effective tidal device to extract the energies from the attacking flow to the structures. For the relatively slow current speed, the VAT system could be more effective application than HAT(Horizontal axis turbine) device. The performance of VAT can be evaluated by various parameters including number of blades, shape, sectional size, diameters and etc. The paper introduces the multi-layer vertical axis tidal current power system with savonius turbine. The turbine was designed with consideration of optimal blade numbers and the performance was simulated by CFD analysis.

  • PDF

Design and Performance Evaluation of the Savonius Tidal Current Turbine (항력식 조류발전 터빈의 최적 형상 설계 및 유동 수치해석을 통한 성능 평가)

  • Jo, Chul-Hee;Ko, Kwang-Oh;Lee, Jun-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.6-13
    • /
    • 2012
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable site for the application of TCP (Tidal Current Power) in Korea. On the south west regions between many islands that create strong current in the narrow channels. The rotor is one of the essential components which can convert tidal current energy into rotational energy to generate electricity. The design optimization of rotor is very important to maximize the power production. The performance of rotor can be determined by various parameters including number of blades, shape, sectional size, diameters and etc. This paper introduces the multi-layer vertical axis tidal current power system which can be applied to offshore jetties and piers effectively. Various cases of VAT turbine were designed. Specifically, the number of blades and turbine shape are changed in several cases. Also, performance analysis was carried out by CFD.

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (I))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2013
  • In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.

Investigating the Power-Performance Prediction on an H- and Helical-type Tidal Current Turbine Using CFD Method (CFD에 의한 H 및 Helical 타입 조류발전용 터빈의 출력성능예측에 관한 연구)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.653-660
    • /
    • 2015
  • In this study, we conduct power performance and load analyses of two different types of vertical-axis tidal-current turbines using the computational fluid dynamics (CFD) method. To analyze the power output and loads, we perform transient CFD simulations considering the cavitation model using ANSYS CFX. The averaged power output of an H-type rotor was 7.47 kW and 67.6 kW in normal and extreme operating conditions, respectively, which did not satisfy the initial design conditions. However, in the case of the helical-type rotor, the power output under normal and extreme conditions were close to the expected values. The cavitation, which may cause instantaneous power fluctuation, occurred repeatedly at the suction side of the rotors. In order to guarantee a more stable power supply and to prevent fatigue failure, we require a design that minimizes cavitation.

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.