Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.151

Investigation on Performance Characteristics of Dual Vertical Axis Turbine of 100 kW Class Tidal Energy Convertor  

HEO, MAN-WOONG (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology)
KIM, DONG-HWAN (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology)
PARK, JIN-SOON (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 151-159 More about this Journal
Abstract
This study aimed to investigate the performance characteristics of vertical axis turbine of tidal energy convertor. Three-dimensional Reynolds-averaged Navier-Stokes equation with shear stress transport turbulence model has been solved to analyze the fluid flow of the vertical axis turbine. The hexahedral grids have been used to construct the computational domain and the grid dependency test has been performed to find the optimum grid system. Four steps have been carried out to design the vertical axis turbine of the 100 kW class tidal energy convertor.
Keywords
Tidal energy convertor; Vertical axis turbine; Power; Darrieus type; 3D Reynolds-averaged Navier-Stokes analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. S. Park, C. Y. Lee, J. S. Park, H. W. Choi, D. H. Ko, and J. L. Lee, "Assessment of tidal stream energy resources using a numerical model in Southwestern Sea of Korea", Ocean Sci. J., Vol. 54, No. 4, pp. 529-541, doi: https://doi.org/10.1007/s12601-019-0038-2.
2 Y. Li, S. M. Calisal, "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine", Renew Energy, Vol, 35, No. 10, 2010, pp. 2325-2334, doi: https://doi.org/10.1016/j.renene.2010.03.002.   DOI
3 J. A. Clarke, G. Connor, A. D. Grant, and C. M. Johnstone, "Design and testing of a contra-rotating tidal current turbine", J. Power and Energy, Vol. 221, 2007, pp. 171-179, doi: https://doi.org/10.1243/09576509JPE296.   DOI
4 J. H. Kim, J. S. Park, and J. H. Ko, "Experimental study on interaction effect of darrieus tidal stream turbines", Ocean and Polar Res., Vol. 41, No. 3, 2019, pp. 193-202, doi: https://doi.org/10.4217/OPR.2019.41.3.193.   DOI
5 Y. Li, S. M. Calisal, "Modeling of twin-turbine systems with vertical axis tidal current turbines: part I-power output", Ocean Eng., Vol. 37, No. 7, 2010, pp. 627-637, doi: https://doi.org/10.1016/j.oceaneng.2010.01.006.   DOI
6 S. R. Turnock, A. B. Phillips, J. Banks, and R. N. Lee, "Modelling tidal current turbine wakes using a coupled RANSBEMT approach as a tool for analysing power capture of arrays of turbines", Ocean Eng., Vol. 38, No. 11-12, 2011, pp. 1300-1307, doi: https://doi.org/10.1016/j.oceaneng.2011.05.018.   DOI
7 M. H. Mohamed, A. M. Ali, and A. A. Hafiz, "CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter", Eng. Sci. Technol., Vol. 18, No. 1, 2015, pp. 1-13, doi: https://doi.org/10.1016/j.jestch.2014.08.002.
8 ANSYS Inc., ANSYS CFX 19.2 tutorial, 2019.
9 B. R. Won, J. H. Ko, and J. S. Park, "Parametric study on optimum arrangement of darrieus tidal turbine", Proc. KSNRE Conference, 2016, pp. 130. Retrieved from http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06691459&nodeId=NODE06691459&language=ko_KR.