• Title/Summary/Keyword: 수직이방성

Search Result 219, Processing Time 0.025 seconds

Thickness Dependence of Ferromagnetic Resonance Properties in NiFe Thin Films (NiFe 박막의 두께에 따른 강자성 공명 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • The out-of-plane and in-plane angular dependence of ferromagnetic resonance field was measured in NiFe thin films fabricated by magnetron sputtering. The effective magnetization was obtained from the out-of-plane angular dependence of ferromagnetic resonance field, which was well agreed with calculated one. The decrease of effective magnetization with NiFe thickness was due to the surface anisotropy constant of $K_s=-0.23\;erg/cm^2$. The in-plane uniaxial anisotropy fields were obtained from the in-plane angular dependence of ferromagnetic resonance field. The easy axis of in-plane uniaxial anisotropy field was rotated to the reverse direction of applied magnetic field during sample fabrication, which was explained by the antiferromagnetic NiFeO layer at sample surface.

Study of the Perpendicular Magnetic Anisotropy and Exchange Bias in [Pd/Co]5/FeMn Superlattices ([Pd/Co]5/FeMn 초격자 다층 박막구조에서 수직 자기이방성과 교환바이어스에 관한 연구)

  • Kim, Ka-Eon;Choi, Hyeok-Cheol;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We investigate the exchange bias effect in $[Pd/Co]_5$ superlattice structures which are representative system of the perpendicular magnetic anisotropy. We fabricate Si/$[Pd/Co]_5$/FeMn structures, and study the exchange bias variations by measuring hysteresis loop variations with thickness of FeMn layer. In order to optimize the perpendicular magnetic anisotropy, we fix the thickness of Pd with 1.1 nm and investigate the dependence of the perpendicular magnetic anisotropy on the ferromagnetic Co layer thickness. As results, we find that the biggest coercivity in 0.3 nm of Co layer without FeMn layer. The biggest exchange bias field is found for 0.3 nm of Co layer when we change the Co thickness with fixed FeMn thickness. When we vary thickness of FeMn layer, the biggest coercivity is found for 5 nm of FeMn layer. No exchange bias is observed when the FeMn layer is thinner than 3 nm, and the exchange bias field increases with FeMn layer thickness continuously up to 15 nm.

Anisotropy Angle Dependence of Interlayer Exchange Coupling of Perpendicular Magnetic [CoFe/Pt/CoFe]/IrMn Multilayers ([CoFe/Pt/CoFe]/IrMn 다층박막의 수직자기 이방성 각도에 따른 상호교환결합력 특성)

  • Lee, Sang-Suk;Choi, Jong-Gu;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Dependence of interlayer exchange coupling on antiferromagnetic IrMn thickness, thermal stability, and parallel anisotropy angle in perpendicular anisotropy [CoFe/Pt/CoFe]/IrMn multilayers was investigated. The magnetic property of [CoFe($10{\AA}$)/Pt($8{\AA}$)/CoFe($10{\AA}$)] induced by antiferromagnetic ordering of IrMn layer was maintained a stable perpendicular anisotropy up to $250^{\circ}C$ and from $7{\AA}$ to $160{\AA}$ of IrMn thickness. The value of interlayer exchange coupling of [CoFe/Pt/CoFe]/IrMn multilayers with perpendicular anisotropy increased to 1.5 times at anisotropy angle of $60^{\circ}$ more than of $0^{\circ}$. On the other side, the interlayer exchange coupling at anisotropy angle of $90^{\circ}$ was $\infty$ Oe, it was likely diverted to a parallel shape magnetization.

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Dependence of Coercivity and Exchange Bias as Surface Magnetic Anisotropy in [Pd/Ferromagnet] Multilayer with Out-of-plane Magnetic Anisotropy (수직자기이방성을 갖는 [Pd/Ferromagnet] 다층막에서 표면자기이방성에 따른 교환력과 보자력의 의존성)

  • Heo, Jang;Kim, Hyun-Shin;Choi, Jin-Hyup;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.98-102
    • /
    • 2008
  • Dependence of the exchange bias and coercivity as surface magnetic anisotropy and ferromagnet materials for $[Pd/Co]_N$ and $[Pd/Co,(CoFe)]_N$/FeMn multilayers with perpendicular magnetic anisotropy were investigated. The coercivity was proportionally increased to 670 Oe by increasing stack number N in Ta(2.1 nm)/[Pd(3.1/N)/$Co(1.2/N)]_N$/Ta(2.1) multilayers with perpendicular magnetic anisotropy. Also, the coercivity in exchange biased multilayer was tend to increased by increasing stack number N. But coercivity of each materials have been in order of Co (600 Oe), $Co_5Fe_5$ (520 Oe) and $Co_8Fe_2$ (320 Oe) as function of the ferromagnet materials. The other side, exchange force of each materials is 300 Oe when the reiteration layer number N is 3. In over number of reiteration layer 3, they maintained coercivity between 200 Oe and 300 Oe.

Mechanical Anisotropy of Jurassic Granites in Korea (국내 주라기 화강암의 역학적 이방성)

  • 서용석;박덕원
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.257-266
    • /
    • 2003
  • Jurassic granites of three sites, Pocheon, Geochang and Habcheon, were tested to investigate the effect of microcracks on Physical and mechanical properties of the granites. Fifteen oriented core specimens were used for the physical property test. The test result shows that porosity is almost proportioned to water content. P-wave velocity is the highest in the direction of axis ‘H’, intersection of two major microcrack sets and the lowest in the axis ‘R’, normal to the rift plane. Compressional strength tests were carried out for each core specimen taken parallel with axes ‘R’, ‘G’ and ‘H’, measuring strains. The results revealed a strong correlation between microcrack orientation and other mechanical properties such as rock strength.

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.