• Title/Summary/Keyword: 수직변형

Search Result 536, Processing Time 0.031 seconds

A Characteristics of Transformed Microstrip Antenna of Mobile Communication (이동통신용 변형된 마이크로스트립 안테나 특성)

  • 박성일;고영혁
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.139-142
    • /
    • 2002
  • 본 논문에서는 기존의 MSA의 구조를 변형하여 용량을 장하한 변형된 MSA구조와 S자형 변형된 MSA 구조를 제안했다. 용량을 장하한 변형된 MSA는 전기력선 형성에 제한 받지 않도록 방사패치와 접지면을 접어 올린 좌ㆍ우측 평행 평판과 방사패치 사이 용량을 장하하고, S자형 변형된 MSA는 방사패치쪽과 그라운드판쪽에 용량을 장하하여 설계ㆍ제작하였다. 설계된 안테나는 2.24GHz의 중심 주파수에서 S자형 변형된 MSA가 5.7%의 대역폭을 갖고, 용량을 장하한 변형된 MSA가 8.71%의 대역폭으로 용량을 장하한 변형된 MSA가 광대역 안테나임을 확인하였다. 또한 제작된 S자형 변형된 MSA의 방사 패턴 특성은 E면과 H면의 수직ㆍ수평 편파의 특성을 측정하여 비교하였다.

  • PDF

Bridge-Vehicle interaction Analysis of Suspension Bridges Considering the Effects of the Shear Deformation (전단변형효과를 고려한 현수교의 교량-차량 상호작용 해석)

  • Kim, Moon-Young;Lim, Myoung-Hun;Kwon, Soon-Duck;Kim, Ho-Kyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.1-11
    • /
    • 2004
  • In the previous study(1), the finite element method was used for the vertical vibration analysis of suspension bridge considering the effects of the shear deformation and the rotary inertia under moving load. This study firstly performs the eigenvalue analysis for the free vertical vibration of suspension bridge using FEM analysis. Next the equations of motion considering interaction between suspension bridge and vehicles/train are derived using mode superposition method. And dynamic analysis was performed using the Newmark $\beta$ Method. Finally through the numerical examples, the dynamic responses of bridges by this study are investigated.

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

Various vertical motions and mechanisms in intraplate settings (판 내부 융기 운동의 다양한 스케일과 매커니즘)

  • SHIN, Jaeryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • The Earth's surface deforms vertically in response to a variety of sources relating to lithospheric and sub-lithospheric processes, and distinguishing the continental mechanisms for vertical motions of the lithosphere remains a fundamental challenge in geosciences. A key prerequisite to the challenge is documentation of the temporal and spatial pattern of vertical motions in different tectonic settings. This study is aimed at elucidating the geodynamic factors that can contribute to vertical motions of the Earth's surface in intraplate continental settings including the Neogene uplift in the Korean peninsula based on numerous recent achievements in relevant fields. Ultimately, deciphering the interplay between the Earth's surface and the Earth's interior processes leads us to the notion of "the importance of geomorphic landscape" as a prism to view the dynamics of the Earth's inside.

A Case Study on the Effects of the Primary Concepts of Division and Fraction upon Relational Understanding of Decimals (나눗셈과 분수의 1차적 개념이 소수의 관계적 이해에 미치는 영향에 대한 사례연구)

  • Kim, Hwa Soo
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.4
    • /
    • pp.353-370
    • /
    • 2015
  • This study was conducted as a qualitative case study that explored how gifted 3rd-grade elementary school children who had learned the primary concepts of division and fraction, when they studied contents about decimal, formed the transformed primary concept and transformed schema of decimal by the learning of accurate primary concepts and connecting the concepts. That is, this study investigated how the subjects attained relational understanding of decimal based on the primary concepts of division and fraction, and how they formed a transformed primary concept based on the primary concept of decimal and carried out vertical mathematizing. According to the findings of this study, transformed primary concepts formed through the learning of accurate primary concepts, and schemas and transformed schemas built through the connection of the concepts played as crucial factors for the children's relational understanding of decimal and their vertical mathematizing.

Finite Element Analysis on the Deformation Behavior Safety of a Gas Valve (가스밸브의 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.70-75
    • /
    • 2017
  • This paper presents the FEM analysis results on the deformation behavior safety of automatic cut-off horizontal and conventional vertical gas valves. Based on the FEM analysis, the primary maximum deformation of $4.4{\mu}m$ was formed on the right end side of a valve body when the internal gas pressure was supplied on the screw port and gas discharge port of an automatic cut-off horizontal gas valve. And the secondary maximum deformation of $2.9{\mu}m$ was formed on the end side of safety valve port. This small deformation of an automatic cut-off horizontal gas valve is strongly related to the balanced design of a horizontal gas valve main body, which is composed of a screw part, gas outlet port, port for a stem and spindle shaft assembly, and safety valve port. But, the primary maximum deformation of 0.076mm was formed on the upper part of a conventional automatic cut-off vertical gas valve when the internal gas pressure was supplied on the screw port and gas discharge port. And the secondary maximum deformation of 0.055mm was formed on the left end side of a gas outlet port. This may effect on the sealing clearance of o-ring that is inserted on the groove of an automatic cut-off unit. Thus, this paper recommends an automatic cut-off horizontal gas valve compared with that of a conventional gas valve for a gas leakage free mechanism of a LPG cylinder valve.

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

A Study on Improving Impedance Characteristics of Planar Monopole Antenna with Vertical Ground Plane (수직 접지면을 갖는 평판형 모노폴 안테나의 임피던스 특성 개선에 관한 연구)

  • Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.54-63
    • /
    • 2011
  • This paper presents the improving impedance charactersitics of a planar monopole antenna with a vertical ground plane. For improving impedance characteristics, we used the effect of a vertical ground plane. To analyze the effect of vertical ground plane, we proposed the dipole antenna mode. the impedance characteristics of planar monopole antenna are improved by correlation between monopole antenna and vertical ground plane, based on each operating mode. Our analysis indicates can improve the impedance characteristics of varying planae monopole antennas.

Measuring and Correcting The Compressive Axial Strain of Concrete Cylinders Retrofitted by External Jackets (외부자켓에 의해 보강된 콘크리트 압축시편의 압축변형률 측정 및 보정)

  • Choi, Eun-soo;Lee, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.215-222
    • /
    • 2009
  • In this study, steel and FRP jackets are used to confine concrete cylinders. The FRP jacket behaviors compositely with concrete since there is bonding between them. However, the used steel jacket in this study do not behavior compositely with concrete since there is not an adhesive between them. The steel jackets are attached by external forces and the welding. This study suggests the measuring method of the axial strain for the confined concrete cylinders showing noncomposite behavior with the jackets and the correcting method of the measured strain for the composite-behavior jackets. For the noncomposite-behavior steel jacket, the axial strain of the steel surface does not represent the axial strain of the concrete inside. Also, a compressormeter can not be used. Thus, the two rigid plates at the top and bottom of a cylinder are placed and the distance of the two plates are measured and used for estimating the axial strain of the concrete. For the composite-behavior FRP jacket, the vertical strain measured on the FRP surface can be used for estimating the axial strain of the concrete. However, the vertical strain on the FRP surface contains the tensile strain due to the bulge of the concrete and, thus, the tensile strain should be corrected from the vertical strain. The corrected verticals strains compared with the measured strain or a existing constitute model; the result is satisfactory. The uncorrected stress-strain curves have the potential to under estimate the ductile behavior and the energy-dissipation-capacity of the composite-behavior FRP jackets.