• Title/Summary/Keyword: 수직밀폐형

Search Result 57, Processing Time 0.032 seconds

Regional Distribution of Ground Thermal Conductivity for Vertical Closed Type Ground Heat Exchanger Design (수직 밀폐형 지중열교환기 설계를 위한 지중 열전도도의 지역별 분포)

  • Jung, Kye-Hoon;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.423-428
    • /
    • 2007
  • This study was performed to construct a geothermal data base about thermal conductivity of ground heat exchanger and thermal properties of grouting material which used to refill the borehole. We have acquired geothermal data sets from 39 sites over wide area of South Korea except to Jeju island. From data analysis, the range of thermal conductivity is 1.5$\sim$4.0 W/mK. It means that thermal conductivity varies with grouting material as well as regional geology and ground water system.

  • PDF

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile (병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가)

  • Park, Sangwoo;Kim, Byeongyeon;Sung, Chihun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.361-375
    • /
    • 2015
  • An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

Effect of grouts and pipe sections for closed-loop vertical ground heat exchanger on effective ground thermal conductivity (그라우트 종류와 열교환 파이프 단면에 따른 수직 밀폐형 지중열교환기의 지중 유효열전도도 평가)

  • Lee, Chulho;Park, Moonseo;Min, Sunhong;Kang, Shin-Hyung;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.167.1-167.1
    • /
    • 2010
  • 본 연구에서는 수직 밀폐형 지중열교환기 뒤채움용 그라우트의 종류와 첨가재 종류, 지중열교환기 파이프 단면에 따른 지중열교환기의 성능을 비교 평가하기 위해 현장 시험 시공과 현장 열응답 시험을 수행하였다. 뒤채움용 그라우트재는 벤토나이트와 시멘트를 사용하였으며 첨가제로는 천연규사와 흑연을 적용하였다. 지중열교환기 파이프 단면은 일반적으로 시공되는 U-loop 파이프 단면과 파이프 사이의 열간섭 효과를 최소화 한 3공형 파이프 단면이 적용되었다. 시멘트-천연규사 그라우트재가 벤토나이트-천연규사 그라우트재 보다 큰 지중 유효열전도도를 보이고 흑연을 첨가한 그라우트는 시멘트와 벤토나이트 모두에서 천연규사만 첨가하였을 때 보다 지중 유효열전도도가 높게 나타났다. 3공형 파이프 단면의 경우 단면에 따른 영향을 비교하기 위해 그라우트는 시멘트-천연규사와 벤토나이트-천연규사를 사용하였으며 지중 유효열전도도 측정결과 각각 3.64 W/mK, 3.40 W/mK으로 일반 U-loop 파이프 단면을 사용하였을 때 보다 높게 나타났다.

  • PDF

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.

A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building (사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구)

  • Lee, Byung-Doo;Lee, Dae-Woo;Lee, Se-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Impact of Design Parameters on Length and Application Effect of Surface Water Heat Exchanger(SWHE) (지표수 열교환기의 용량과 적용 효과에 대한 설계 인자의 영향)

  • Sohn, Byonghu;Min, Kyong-Chon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • Commercial buildings are generally cooling-dominated and therefore reject more heat to a vertical ground heat exchanger(GHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of GHE. The objective of this work has been to develop a design tool for surface water heat exchanger(SWHE) submerged in shallow pond. This paper presents the analysis results of the impact of design parameters on the length of SWHE and its application effect on geothermal heat pump(GHP) system using vertical GHE. In order to analysis, We applied ${\epsilon}-NTU$ method on designing the length of SWHE. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of vertical GHE was more stable than that of standalone GHE system.

Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger (수직 밀폐형 지중열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Choi, Hang-Seok;Kang, Shin-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.107-115
    • /
    • 2010
  • In this paper, the applicability of cement grout bas been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which was exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout was evaluated by performing equivalent hydraulic conductivity tests, on the specimen. in which a pipe locates at the center of the specimen.

A Study on the Effects of Design Parameters of Vertical Ground Heat Exchanger on the Borehole Thermal Resistance (수직밀패형 지중열교환기의 설계인자가 보어홀 전열저항에 미치는 영향에 관한 연구)

  • Chang, Keun Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.128-135
    • /
    • 2018
  • Currently, vertical closed ground heat exchangers are the most widely utilized geothermal heat pump systems and the major influencing parameters on the performance of ground heat exchangers are the ground thermal conductivity(k) and borehole thermal resistance($R_b$). In this study, the borehole thermal resistance was calculated from the in-situ thermal response test data and the individual effects of design parameters (flow rate, number of pipe, grout composition) on the borehole thermal resistance were analyzed. The grout thermal resistance was also compared with the correlations in the literatures. The borehole thermal resistance of the investigated ground heat exchanger results in 0.1303 W/m.K and the grout thermal resistance (66.6% of borehole thermal resistance) is the most influencing parameter on borehole heat transfer compared to the other design parameters (pipe thermal resistance, 31.5% and convective thermal resistance, 1.9%). In addition, increasing the thermal conductivity of grout by adding silica sand to Bentonite is more effective than the other design improvements, such as an increase in circulating flowrate or number of tubes on enhancing borehole heat transfer.

Study on the characteristic of heat exchange for vertical geothermal system using the numerical simulation (수치 시뮬레이션을 이용한 수직밀폐형 지열시스템의 채열특성에 관한 연구)

  • Nam, Yu-Jin;Oh, Jin-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2014
  • Ground source heat pump system can achieve high efficiency of performance by utilizing annually constant underground temperature to provide heat source for space heating and cooling. Generally, the depth of constant-temperature zone under the ground depends on surface heat flux and soil properties. The deeper the ground heat exchanger is installed, the higher the heat exchange rate can be acquired. However, in order to optimally design the system, it is necessary to consider both the installation cost and the system performance. In this study, performance analysis of ground source heat pump system according to the depth has been conducted through the case study.