• Title/Summary/Keyword: 수직가속도

Search Result 161, Processing Time 0.031 seconds

Change in Countermovement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics (반동을 이용한 수직 점프 시 높이 변화에 따른 운동역학 및 상변화 시점에서의 지면반력 벡터 변화)

  • Kim, Seyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2017
  • In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the countermovement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the countermovement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the countermovement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

A comparison of activity recognition using a triaxial accelerometer sensor (3축 가속도 센서를 이용한 행동 인식 비교)

  • Wang, ChangWon;Ho, JongGab;Na, YeJi;Jung, HwaYung;Nam, YunYoung;Min, Se Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1361-1364
    • /
    • 2015
  • 본 연구에서는 노인들이 일상에서 많이 행동하는 7가지 유형의 행동의 특징을 추출하고, 총 7가지 분류 알고리즘에 적용하여 가장 인식률이 높은 알고리즘을 도출하고자 하였다. 행동패턴은 정상보행, 절름발이, 지팡이, 느린 보행, 허리가 굽은 상태에서 보행, 스스로 휠체어 끌 때 그리고 누군가가 휠체어를 끌어줄 때 총 7가지로 구성하였다. 행동패턴의 특징은 3축 가속도 센서의 값, 평균, 표준편차, 수직 및 수평축의 데이터를 사용하였다. 분류 알고리즘은 Naive Bayes, Bayes Net, k-NN, SVM, Decision Tree, Multilayer perception, Logistic regression을 사용하였다. 연구결과 k-NN 알고리즘의 인식률이 98.7%로 다른 분류알고리즘에 비해 인식률이 높게 나타났다.

Characteristic of ZEM Based Guidance Law with Time-to-go Estimation Methods (잔여시간 추정에 따른 ZEM 기반 유도법칙의 특징)

  • Kim, Tae-Hun;Park, Bong-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.429-437
    • /
    • 2019
  • This paper deals with a ZEM (Zero-Effort-Miss) based guidance law for the interception of moving targets and characteristics of the guidance law according to time-to-go estimation methods. To derive the ZEM vector feedback guidance command, we introduce a polynomial function with unknown coefficient, and then we determine the coefficient to satisfy initial and terminal constraints. Since the directions of the guidance command and ZEM vectors are adjusted by the time-to-go, general time-to-go estimation methods are proposed, which can generate the vertical and horizontal guidance commands with respect to an arbitrary reference frame. By performing various numerical simulations, the performance and characteristics of the proposed methods are investigated.

Stability and Safety Analysis on the Next Generation High-Speed Railway Vehicle (차세대 고속철도의 안정성 및 안전성 해석)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Ji-Young;Kim, Young-Guk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • In this work, the stability and safety analysis are carried out to predict the performance of a next generation high-speed railway vehicle (HEMU-400X). Since the safety of the high-speed railway vehicles is very important, it is meaningful to predict the dynamic performance and stability of the railway vehicles using a numerical model at a railway vehicle design step. The critical speed of the dynamic model depending on the conicity of the wheel is calculated in the stability analysis. The critical speed calculated in this analysis is over 400km/h for the conicity value of 0.15, which is determined on the basis of representative international standard, UIC 518. Also, the lateral and vertical accelerations at several points of the same dynamic model are calculated for the safety analysis. In the simulation, the dynamic model runs at the test speed of 440km/h, which is determined considering a maximum target speed, and the total driving distance is 30km. And those estimated values are less than the allowed maximum acceleration values of UIC 518.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Ankle Taping and Vertical Drop Landing (발목관절의 테이핑과 수직 착지동작)

  • Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.17-29
    • /
    • 2001
  • 발목에 대한 유착성 테이핑의 적용은 물리치료 분야와 운동 트레이닝 분야에서의 일반적인 치료 접근 방법이라 할 수 있다. 즉 발목 염좌 같은 손상을 예방하기 위한 방법과 재활의 부가적인 치료 형태로 이용될 수 있는 것이다. 본 연구는 발목의 테이핑과 트레드밀에서의 30분간 보행이 수직 착지 동작 동안 하지의 운동 역학적 요소들에 어떠한 영향을 주는지 알아보기 위해 시행되었다. 14명의 신체 건강한 대상자들 (남:10, 여:4)이 본 연구에 참여하였다. 한발로 서있는 동안 40 cm의 높이로 뛰게 하였다. 가자미근, 전경골근, 안쪽넓은근, 넙다리 두갈래근에 근전도 전극이 부착되었다. 테이핑된 신체 부위로 착지하는 동안 근전도와 힘판(force plate) 자료가 500 Hz의 주파수로 수집되었다. 대상자들의 우세쪽 하지 발목에 테이핑을 하였고, 대상자는 한발로 뛰어 내리는 동작을 반복하였다. 트레드밀에서 30분 동안 발목에 테이핑을 한 채로 보행하였고 이후 한발로 뛰어 내리는 동작을 반복하여 수행하였다. 테이핑을 적용한 상태와 테이핑한 채로 30분 동안 트레드밀에서 걷기 운동을 한 조건에서 수직 지면 반발력의 통계학적으로 유의미한 증가가 있었다. 착지 동안에 네 가지 상황에서의 최대 내측 가속도의 유의한 차이가 있었고, 그 차이는 테이핑 전과 테이핑을 한 채로의 운동 조건에서 유의한 차이가 있었다. 테이핑한 상태에서 가자미근은 접촉되는 착지 순간부터 최대 수직 지면 반발력이 나타나는 동안의 평균 근전도의 수치에 있어서 유의한 감소가 있었다. 반면에 다른 근육들에서는 아무런 변화를 보이지 않았다. 비록 발목 테이핑이 발목 손상의 위험을 줄이는데 효과적이라고 일반적으로 인식되고 있으나 이번 실험의 결과는 30분 동안의 트레드밀에서의 보행 후 테이핑은 발목의 움직임을 제한하는 효과는 있지만 한편으로는 가자미근의 활동을 감소시키는 것을 보여주었다. 따라서 이 연구의 결과는 테이핑을 하면 점프와 착지로 이어지는 동작 중에 발목관절 손상 위험을 증가시킬 가능성이 있음을 보여주었다.

  • PDF

Serviceability Performance Evaluation of Vertical Vibration of Waflle Shape and Duble-Tee Precast Concrete Slabs (와플형과 더블티형 프리캐스트 콘크리트 바닥판의 수직진동 사용성 평가)

  • Shin, Jae-Sang;Chung, Lan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.62-69
    • /
    • 2010
  • In this study, the serviceability performance of Waffle Shaped(WAS) and Double-Tee(DT) precast concrete slabs were evaluated and compared based on the vertical acceleration magnitude induced by walking and heel drop loads. Tests were conducted for practical building structures of which floor systems used WAS and DT slabs. Natural frequencies of the slabs were similar to those obtained by using analytical models. The measured acceleration level was evaluated by vertical floor acceleration criteria presented by ISO-2631, AIJ(1991, Japan) and a previous study regarding floor vibration limit. Test results showed that both WAS and DT slabs satisfied all the criteria and Peak acceleration level of WA slabs was lower than that of DT slabs.

Design Parameter Identification Using Transfer Function of Liquid Column Vibration Absorber (LCVA) (전달함수를 이용한 LCVA의 설계변수 분석)

  • Lee, Sung-Kyung;Min, Kyung-Won;Chung, Hee-San
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 2009
  • The purpose of this study is to verify the transfer function of input acceleration and output control force by linearizing a velocity-dependent damping term of Liquid Column Vibration Absorber (LCVA). Analytical and experimental research is conducted to identify natural frequency, damping ratio and participated mass ratio of LCVA with various section ratios of vertical and horizontal areas. Findings obtained experimentally by the shaking table test are compared with analytical findings using optimization technique with constraints. The results indicate that the level of liquid and section ratio of LCVA affect the characteristics of damping ratio and mass ratio. Damping and mass ratio increase as the section of vertical column of LCVA decreases, due to turbulence in the elbow of LCVA.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Comparison of Vibration Characteristics of a Multi-leaf Spring and a Tapered Leaf Spring of a Heavy Truck (대형트럭 다판 스프링과 테이퍼 판스프링의 진동특성 비교)

  • Oh Chae-Youn;Moon Il-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.270-276
    • /
    • 2005
  • This paper develops the flexible computational model of a heavy truck by interfacing the frame modeled as a flexible body to the heavy truck's computational model composed of rigid bodies. The frame is modeled by the finite element method. Three torsional modes and three bending modes of the frame are considered for the interface of the heavy truck's computational model. The actual vehicle test is conducted off road with a velocity of 20km/h. The vertical accelerations at the cab and front axle are measured in the test. For the verification of the developed computational model, the measured vertical acceleration profiles are compared with the simulation results of the heavy truck's flexible computational model. E grade irregular road profile of ISO is used as an excitation input in the simulation. The verified flexible computational model is used to compare the vibration characteristics of a front suspension system having a multi-leaf spring and that having a tapered leaf spring. The comparison results show that the front suspension having a tapered leaf spring has a higher vertical acceleration at the front axle but a lower vertical acceleration at the cab than the suspension system having a multi-leaf spring.