• Title/Summary/Keyword: 수중표적

Search Result 156, Processing Time 0.026 seconds

Application of LFM Reverberation Suppression Using Difference of Singular Values in the Underwater Obstacle Detection (수중 장애물 탐지에서의 특이 값 차이를 이용한 LFM 잔향 감소 기법 적용 연구)

  • Lee, Hyung-Soo;Kwon, Bum-Soo;Cho, Chom-Gun;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.755-760
    • /
    • 2009
  • In this paper, we apply a reverberation suppression method using difference of singular values to improve the short-distance underwater obstacle detection probability in reverberation environment induced by a linear frequency modulation signal. The reverberation suppression method using difference of singular values suppresses LFM reverberation based on subtracting the singular values for a reference beam, assumed to contain only the reverberation, from those for the current beam of interest, assumed to contain the reverberation and target echo. For the validation, the reverberation suppression method using difference of singular values is applied to real oceanic data, which are acquired using the cross type array.

Comparison of target classification accuracy according to the aspect angle and the bistatic angle in bistatic sonar (양상태 소나에서의 자세각과 양상태각에 따른 표적 식별 정확도 비교)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Choo, Youngmin;Choi, Giyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.330-336
    • /
    • 2021
  • In bistatic sonar operation, the scattering strength of a sonar target is characterized by the probe signal frequency, the aspect angle and the bistatic angle. Therefore, the target detection and identification performance of the bistatic sonar may vary depending on how the positions of the target, sound source, and receiver are changed during sonar operation. In this study, it was evaluated which variable is advantageous to change by comparing the target identification performance between the case of changing the aspect angle and the case of changing the bistatic angle during the operation. A scenario of identifying a hollow sphere and a cylinder was assumed, and performance was compared by classifying two targets with a support vector machine and comparing their accuracy using a finite element method-based acoustic scattering simulation. As a result of comparison, using the scattering strength defined by the frequency and the bistatic angle with the aspect angle fixed showed superior average classification accuracy. It means that moving the receiver to change the bistatic angle is more effective than moving the sound source to change the aspect angle for target identification.

A Performance Analysis on the Time Spread Highlight Synthesized Models for Underwater Active Target (수중 능동표적에 대한 시간분산 하이라이트 합성모델 성능분석)

  • 김부일;이형욱;박명호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • An echo signal in the active sonar using a high frequency is mainly formed of a specular reflection from the surface of an object along with several equivalent scatter inside, which are characterized by the spatial distribution of the highlights on the object. This thesis proposed a model in which the synthesized echo signal can be expressed as a distributed simulated target. The proposed model is obtained after composing a signal based on the movement of highlights relative to the aspect angle from the discontinuous point of an external hull with a strong reflection from a spheroid underwater target. Because the proposed algorithm includes a synthesis of the signals related to the highlight spacial distribution, it can be applied to all kinds of systems used at a short range, and similar results were obtained to the actual measured results of all reflected signals in previous literature referring to the irregular factor application of an envelope.

A Novel Synthesis Method of Underwater Target Reflected Signal (수중 표적 반사신호의 새로운 합성방법)

  • 김부일;김우현;박철우;박명호;권우현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.30-39
    • /
    • 1999
  • In this paper, we have proposed a novel method which can compose a reflected signal of the underwater target. The synthesis of the reflected signal in the target, the synthesized signal being similar to the characteristics of the reflected signal in the real target, is used the highlight model at the specific points of the target. We suggest the synthesis method of the reflected signal of the target using the pulsewidth variation and each other doppler effect at the highlight point, and compare the composed signal by the proposed method with that by conventional one. Simulation results show that the composed signal using the proposed method and the reflected signal of the real target is similar to the spectral characteristics.

  • PDF

Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions (SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석)

  • Park, Jeonghyun;Hwang, Chansik;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1083-1088
    • /
    • 2013
  • Detection and classification of undersea mines in shallow waters using active sonar returns is a difficult task due to complexity of underwater environment. Support vector machine(SVM) is a binary classifier that is well known to provide a global optimum solution. In this paper, classification experiments of sonar returns from mine-like objects and non-mine-like objects are carried out using the SVM, and classification performance is analyzed and presented with discussions depending on parameter values of SVM kernel functions.

Numerical Analysis Method for Target Strength and Experimental Verification (표적강도 수치해석 기법 개발과 실험적 검증)

  • Choi Y. H.;Kim J. S.;Shin K. C.;You J. S.;Joo W. H.;Kim Y. H.;Park J. H.;Choi S. M.;Kim W. S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.171-174
    • /
    • 2004
  • 표적강도는 수중 산란체의 능동 탐지 확률을 좌우하는 중요한 변수중 하나이며 산란체의 기하학적 형상에 의해 결정이 되기 때문에 수치해석을 통한 해석 및 예측이 가능하다. 수치해석 기법은 현재 여러 가지가 알려져 있으며, 그중 Kirchhoff approximation이 다른 해석 기법에 비해 거울면 반사특성의 산란해석에 적합하며, 프로그램으로의 적용이 용이하다는 장점으로 인해 많이 사용되고 있다. 본 연구에서는 이러한 장점에 의거하여 Kirchhoff approximation을 이용하여 표적강도 수치해석 프로그램을 개발 및 검증하였다. 프로그램의 성능 검증은 원통형 산란체에 대한 이론해 검증과 원통형 실험 산란체를 통한 실험 검증을 수행하였다.

  • PDF

Performance Analysis of Own Ship Noise Cancellation in Hull Mounted Sonar System Using Adaptive Filter (HMS시스템에서 적응필터를 이용한 자함의 소음감소 성능분석)

  • Yoon, Kyung-Sik;Jung, Tae-Jin;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • In a passive sonar, the improvement of detection performance by using noise cancellation is usually a important problem. In this paper, we have analyzed the own-ship noise cancellation in the two operation modes which are used in the HMS system. In the operator mode, an adaptive line enhancer(ALE) is applied to improve the tonal detection by using broadband noise cancellation and the normalized least mean square(NLMS) algorithm is applied to the design of an adaptive filter. The reference input that is correlated with a primary input can be used to remove the noise incident on the observation directionin the automatic mode. Computer simulations with real sea that data show that the proposed adaptive noise canceller has good performance in passive detection under HMS operation.

Estimation of bearing error of line array sonar system caused by bottom bounced path (해저면 반사신호의 선 배열 소나 방위 오차 해석)

  • Oh, Raegeun;Gu, Bon-Sung;Kim, Sunhyo;Song, Taek-Lyul;Choi, Jee Woong;Son, Su-Uk;Kim, Won-Ki;Bae, Ho Seuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.412-421
    • /
    • 2018
  • The Line array sonar consisting of several hydrophones increases array gain and improves the performance for detecting the direction of the target compared to single hydrophone. However, line array sonar produces the bearing error that makes it difficult to determine the bearing of incoming source signal due to the relation between bearing angle of target and vertical angle of multipath signals. Vertical angles of multipath are varied with the geometry of receiver and target and various underwater environments, therefore it is necessary to consider the bearing error to estimate accurately the bearing of the target. In this study, acoustic modelling was performed to understand the effect of multipath signals on the target signal. The errors of bearing angle estimated from the bottom bounced signals are calculated with several environment. In addition, the expected bearing line, as a function of source-receiver range, compensated for the bearing error is predicted from the estimated bearing angle.

Improvement of non-negative matrix factorization-based reverberation suppression for bistatic active sonar (양상태 능동 소나를 위한 비음수 행렬 분해 기반의 잔향 제거 기법의 성능 개선)

  • Lee, Seokjin;Lee, Yongon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.468-479
    • /
    • 2022
  • To detect targets with active sonar system in the underwater environments, the targets are localized by receiving the echoes of the transmitted sounds reflected from the targets. In this case, reverberation from the scatterers is also generated, which prevents detection of the target echo. To detect the target effectively, reverberation suppression techniques such as pre-whitening based on autoregressive model and principal component inversion have been studied, and recently a Non-negative Matrix Factorization (NMF)-based technique has been also devised. The NMF-based reverberation suppression technique shows improved performance compared to the conventional methods, but the geometry of the transducer and receiver and attenuation by distance have not been considered. In this paper, the performance is improved through preprocessing such as the directionality of the receiver, Doppler related thereto, and attenuation for distance, in the case of using a continuous wave with a bistatic sonar. In order to evaluate the performance of the proposed system, simulation with a reverberation model was performed. The results show that the detection probability performance improved by 10 % to 40 % at a low false alarm probability of 1 % relative to the conventional non-negative matrix factorization.

Development of Underwater-type Autonomous Marine Robot-kit (수중형 자율운항 해양로봇키트 개발)

  • Kim, Hyun-Sik;Kang, Hyung-Joo;Ham, Youn-Jae;Park, Seung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2012
  • Recently, although the need of marine robots being raised in extreme areas, the basis is very deficient. Fortunately, as the robot competition is vitalizing and the need of the robot education is increasing, it is desirable to establish the basis of the R&D and industrialization of marine robots and to train professionals through the development and diffusion of marine robot kits. However, in conventional case, there is no underwater-type autonomous marine robot kit for the marine robot competition, which has the abilities of the underwater locomotion and target detection and avoidance. To solve this problem, a marine robot kit which has the abilities of the underwater locomotion, the waterproof and the weight adjustment, is developed. To verify the performance of the developed kit, test and evaluation such as surge, pitch, yaw, obstacle avoidance is performed. The test and evaluation results show that the possibility of the real applications of the developed kit.