• Title/Summary/Keyword: 수중채널 모델링

Search Result 25, Processing Time 0.024 seconds

MIMO Vector Channel Modeling and Performance Analysis in Underwater Channel Environments (수중 MIMO 벡터 채널 모델링 및 성능 분석)

  • Lee, Deok-Hwan;Ko, Hak-Lim;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.426-431
    • /
    • 2007
  • In this paper we have studied the underwater vector channel modeling for MIMO(Multiple Input Multiple Output) to increase the performance and efficiency for ultrasound communication in underwater channel environments. Also we have analyzed the MIMO techniques using the proposed channel modeling. For underwater MIMO channel modeling. experiments were done in real channel environments and the data were analyzed to estimate parameters such as fading, Doppler, time delay, angle of arrival, and receiving power. These were used for modeling of underwater vector channel modeling for MIMO. Additionally, we have analyzed the performance of MIMO systems using our proposed channel models. As a result we could see that the BER has decreased severely with the same SNR when using the MIMO system.

Channel Modeling for Underwater data communications (실측 데이터를 이용한 수중 환경에서의 초음파 전달채널 모델링에 대한 연구)

  • Lee DeokHwan;Hwang KyumJu;Jang HyunSuk;Lim YongKon;Ko HakLim
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.441-442
    • /
    • 2004
  • 본 논문에서는 남해 바다에서 디지털 데이터 전송 실험을 통하여 잃은 데이터를 이용하여 수중 초음파 전달 채널을 분석하고, 데이터 분석으로 추정된 채널 파라메타를 이용하여 수중에서 고속 및 고성능의 디지털 통신을 위하여 요구되는 디지털 처리 기법의 성능을 정확하게 분석하기 위한 수중채널 모델링을 하였다. 또한, 수중 채널 모델링은 모델링된 채널을 및 기타 파라메타를 계수 값으로 하는 FIR 구조 근간의 COSSAP 기법을 사용하였다.

  • PDF

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

Alamouti MIMO-OFDM-based analysis in the vertical channel of the underwater communication (수중통신의 수직채널에서 Alamouti 기반 MIMO-OFDM 분석)

  • Cho, Byung-Lok;Maeng, Gi-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5571-5578
    • /
    • 2015
  • In this paper, we analyzed Alamouti based the MIMO-OFDM system in an underwater vertical communication channels. These in consideration both the transmission loss the multipath loss which is suitable for underwater environment are necessary method to improve the efficiency and communication performance in underwater communication. This paper is modeled in an environment that caused the error, considered each simulated the multi-path loss, transmission loss, the Doppler spread in order to implement a practical communication environment and simulated through the MIMO-OFDM system of Alamouti STBC method. The MIMO-OFDM system 2Tx-2Rx of Alamouti STBC scheme in underwater vertical communication system is obtained about 3~5 dB gain as compare with its 2Tx-1Rx scheme with reference $10^{-3}$ BER.

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

수중음향통신을 위한 물리계층 기술

  • Im, Tae-Ho;Go, Hak-Rim
    • Information and Communications Magazine
    • /
    • v.33 no.8
    • /
    • pp.63-70
    • /
    • 2016
  • 본고에서는 최근 활발하게 연구되고 있는 수중 음향통신을 위한 물리계층 기술에 대하여 알아 본다. 수중음향통신은 지상의 전파를 이용한 무선 통신 기술과 달리 음파를 이용한다. 음파는 수중에서 약1500m/s로 매우 저속이고 시간에 따른 다중 경로와 해수면과 해저면에서의 반사가 발생한다. 또한 수온, 염분, 수압, 해류와 해저지형 등에 의해 신호의 왜곡 및 손실이 일어나기 때문에 수중음향통신은 지상에서 전파를 이용한 통신에 비하여 매우 어려운 일이다. 본고에서는 이러한 수중음향채널의 특성을 살펴보고 링크버짓 계산을 한다. 그리고 수중음향통신을 위한 물리계층 변조기법을 살펴본다. 특히 OFDM 변조기법에 대하여 자세히 설명하고 실해역 측정을 통한 수중채널 특성을 기반으로 채널을 모델링하고 OFDM 변조기법을 위한 파라미터 선정 및 성능비교를 하였다.

A Study on Performance of Symbol Error Rate for Frequency Domain Eqaulization (수중 무선채널환경에서 주파수영역 등화기법의 심볼오율에 대한 연구)

  • Hwang, Ho-Seon;Park, Kyu-Tae;Shin, Kee-Cheol;Cho, Sung-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2017
  • In this paper, we study on symbol error rate(SER) performance of frequency domain decision feedback equalization for modelled underwater channel. Underwater channel is generated by Bellhop model. Simulation results show that proposed method is efficient for underwater acoustic communication.

  • PDF

Discrete-time approximation and modeling of a broadband underwater propagation channel based on eigenray analysis (고유 음선 분석에 기반한 광대역 수중음향 전달 채널의 이산시간 근사 및 모의 방법 연구)

  • Shin, Donghoon;Cho, Hyeon-Deok;Kwon, Taekik;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.

Underwater Channel Analysis and Transmission Method Research via Coded OFDM (수중채널 분석과 Coded OFDM을 통한 전송방법 연구)

  • Jeon, Hyeong-Won;Lee, Su-Je;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.573-581
    • /
    • 2011
  • The underwater channel is known to offer poor communications channel. The channel medium is highly absorptive and the transmission bandwidth is limited. In addition, the channel is highly frequency selective; the degree of selectiveness depends on a detailed geometry of the channel. Furthermore, the response changes over time as the channel conditions affecting the response such as water temperature, sea surface wind and salinity are time-varying. The transceiver design to deal with the frequency and time selective channel, therefore, becomes very challenging. It has been known that deep fading at certain specific sub-carriers are detrimental to OFDM systems. To mitigate this negative effect, the proposed coded OFDM system employs an LDPC code based modulation. In this paper, we aim 1) to provide a detailed underwater channel model; 2) to design a robust LDPC coded OFDM system; 3) to test the proposed system under a variety of channel conditions enabled by the channel model.

Performance of Adaptive Equalizer in the Shallow Underwater Acoustic Communication Channel (천해 수중 음향 통신 채널에서 적응 등화기의 성능)

  • Choi, Hyun-Kyu;Lee, Sangmin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The inter-symbol interference(ISI) is one of the main obstacles to reliable high-rate data communication in the shallow underwater acoustic channel. This paper studies on the simulation of adaptive equalizer used as a means of mitigating the ISI in the shallow underwater acoustic communication system. The underwater channel is modeled as a superposition of multiple paths, whose lengths and relative delays are calculated from the channel geometry. Based on this channel model, computer simulations are carried out to investigate the performance of adaptive equalizer in the shallow underwater acoustic channel.