수중음향통신을 위한 물리계층 기술

임태호, 고학림 호서대학교

요약

본고에서는 최근 활발하게 연구되고 있는 수중 음향통신을 위 한 물리계층 기술에 대하여 알아 본다. 수중음향통신은 지상의 전파를 이용한 무선 통신 기술과 달리 음파를 이용한다. 음파 는 수중에서 약1500m/s로 매우 저속이고 시간에 따른 다중 경 로와 해수면과 해저면에서의 반사가 발생한다. 또한 수온, 염 분, 수압, 해류와 해저지형 등에 의해 신호의 왜곡 및 손실이 일 어나기 때문에 수중음향통신은 지상에서 전파를 이용한 통신에 비하여 매우 어려운 일이다. 본고에서는 이러한 수중음향채널 의 특성을 살펴보고 링크버짓 계산을 한다. 그리고 수중음향통 신을 위한 물리계층 변조기법을 살펴본다. 특히 OFDM 변조기 법에 대하여 자세히 설명하고 실해역 측정을 통한 수중채널 특 성을 기반으로 채널을 모델링하고 OFDM 변조기법을 위한 파 라미터 선정 및 성능비교를 하였다.

I. 서론

최근 과학기술의 발전과 함께 물리 해양학, 해양 생물학, 수 중 고고학 등 다양한 학문적 목적과 기후 변화, 지구 온난화, 수 중환경 모니터링, 해양 석유/가스전 모니터링, 군사적 목적의 항만방어체계 등 다양한 분야에서 수중 통신 기술이 활발히 활 용되고 있다. 또한, 자원 탐사, 인명구조 등 사람이 직접 작업할 수 없는 환경에서AUV(Autonomous Underwater Vehicle)를 활용한 원격작업이 증가함에 따라 수중통신 기술의 중요성이 증가되고 있다[1].

수중에서 통신을 하기 위해서는 케이블, 전자기파, 광학, 음 파 등 다양한 전송매체를 사용 할 수 있다. 케이블을 이용한 유 선통신 방식은 설치, 유지 비용이 매우 높은 문제점이 있고, 전 자기파와 광학은 수중에서 감쇠가 매우 크기 때문에 신호의 통 달거리가 매우 짧은 문제점을 지닌다. 음파의 경우 1kHz ~ 100kHz 대역의 낮은 주파수를 사용하므로 낮은 전송속도를 가 지지만 수십 킬로미터까지 통신이 가능한 점에서 수중통신을 위한 가장 유력한 전송매체이다. 대부분 수중통신을 위한 전송 매체로 음파를 이용한 기술에 초점을 맞추고 있다. 수중환경에 서 음파를 사용한 통신은 하기 위해서는 수온, 수심과 염분 등 에 영향으로 변화하는 음속과 다중경로에 의한 채널 지연, 해수 면과 해저면에 의한 반사와 산란 등에 의한 다양한 잡음원들과 해류에 의한 송수신기 이동으로 발생하는 도플러 영향과 수중 에서의 큰 감쇠 등으로 인하여 수중음향통신은 지상 환경에 비 하여 매우 어려운 일이다[2,3].

본고에서는 열악한 통신환경을 보이는 수중 음향채널의 특성 에 대하여 살펴보고 링크버짓 계산식에 대하여 설명한다. 그리 고 수중음향 통신을 위하여 최근 활발히 연구되고 물리계층 변 조기법인 대역확산 기법과 OFDM 기법에 대하여 살펴본다. 특 히, 한반도 서해 특정 지역의 실해역 수중채널 측정 결과를 기 반으로 수중음향 채널모델링과 OFDM 변조를 위한 파라미터 선정 및 성능을 확인한다.

Ⅱ. 수중음향채널의 특성

수중음향채널 환경은 수심, 수온 분포 및 염분 농도 등에 따라 신호의 전달속도가 변화하고, 해수면이나 해저면의 반사로 인 한 다중경로가 발생한다. 또한 페이딩과 도플러 효과가 시간에 따라서 매우 빠르게 변화하므로 계절이나 기상 상태의 영향을 받는다. 이러한 특성을 자세히 알아보기 위하여 수중음향채널 의 음속 특성, 경로 감쇠 및 다중경로 페이딩, 도플러 효과, 잡 음에 대하여 기술한다.

1. 음속 특성

수중에서 음속은 수온, 압력 및 염도 등에 의존한다. 해수면 근처에서의 음속은 약 1,520m/s 정도이지만 음속은 수온 1도 상승에 대해 4.0m/s가 증가하며 염분농도 단위인 PSU (Practical Salinity Unit)를 기준으로 1 증가할 때마다 1.4m/s 증가

그림 1. 수중 깊이에 따른 염분 농도, 수압, 수온의 변화 경향

한다. 수중 깊이가 1km 증가에 대해 17m/s 음속이 증가한다. 이와 같은 특성을 바탕으로 일반적인 음속 프로파일을 도시하 면 〈그림 1〉, 〈그림 2〉와 같다[4].

〈그림 1〉과 〈그림 2〉와 같이 음속은 염분, 수압, 수온 등의 환 경에 따라 수시로 변화할 수 있으므로 이를 극복하고 음파를 이 용하여 수중통신을 하는 것은 지상에서 전파를 이용하는 경우 에 비해 매우 도전적인 일이다.

2. 경로 감쇠 및 다중경로 페이딩

수중채널에서 음파는 해수면과 해저면에서 반사에 의하여 다 중경로를 형성한다. 다중경로에 의한 지연확산은 심볼 간 간섭 과 주파수 선택적 페이딩을 발생시켜 통신 시스템의 성능을 저 하 시키는 원인이 된다[5]. 수중채널의 반사경로를 전달 함수로 식(1)과 같이 표현할 수 있다.

$$H_i(f) = \frac{\Gamma_i}{\sqrt{A(d_i, f)}} \tag{1}$$

여기서 $A(d_i, f)$ 는 거리가 d_i 이고 반송파의 주파수가 f Hz 인 경로의 감쇠를 의미하며, Γ_i 는 해수면에서의 반사 계수이 다. 식(1)의 경로 감쇠 $A(d_i, f)$ 는 식(2)로 표현된다.

$$A(d_i, f) = A_0 d^k a(f)^t$$
⁽²⁾

여기서 A_0 는 constant scaling factor이며, k는 분산 계수 (spreading factor)로 트랜스듀서의 형태에 따라 1에서 2사이 의 값을 가진다. a(f)는 흡수 계수(absorption coefficient)로 다음과 같다[6][7]

$$a(f) = 10^{\alpha(f/1000)/10000}$$
(3)

 $\alpha(f)$ 는 Thorp's empirical formula에 의해 정의 되며 단위 는 dB/km 이다[3][8].

$$\alpha(f) = \frac{0.11f^2}{1+f^2} + \frac{44f^2}{4100+f^2} + 2.75 \times 10^{-4} f^2 + 0.003 \quad (4)$$

식(4)를 통해 알 수 있듯이 주파수가 높아 질수록 수중에서 흡 수 계수가 커지므로 전체적인 경로 감쇠가 높아지는 것을 확인 할 수 있다.

식(1)에서 반사 계수 Γ_i 는 다음과 같이 표현 된다.

$$\Gamma_{i} = \gamma_{s}^{n_{sp}} \gamma_{b}^{n_{bp}} \left(\theta_{i} \right) \tag{5}$$

식(5)에서 $\gamma_s^{n_{sy}}$ 는 해수면, $\gamma_b^{n_{by}}$ 는 해저면에 의한 반사 계수로 이상적인 해면의 경우, γ_s 는 -1값을 가지며 r_b 는 다음과 같다.

$$r_{b}(\theta_{i}) = \begin{cases} \frac{\rho_{b}\sin\theta_{i} - \rho\sqrt{\left(c/c_{b}\right)^{2} - \cos^{2}\theta_{i}}}{\rho_{b}\sin\theta_{i} + \rho\sqrt{\left(c/c_{b}\right)^{2} - \cos^{2}\theta_{i}}}, \cos\theta \leq c/c_{b} \\ 1, \text{ otherwise} \end{cases}$$
(6)

식(6)에서 *ρ*와 *c*는 일반적인 물의 밀도와 음속으로 1000 g/ m³, 1500 m/s이며 *ρ_b*와 *c_b*는 해저에서의 물의 밀도와 음속으 로 1800 g/m³, 1300 m/s이다[3][7][8]. 이와 같은 수중채널에 서의 반사 특성을 고려한 임펄스 응답은 다음과 같이 표현된다.

$$h(t) = \sum_{i} h_i \left(t - \tau_i \right) \tag{7}$$

여기서 $h_i = i$ 번째 반사경로의 전달함수에 대한 역 푸리에 변 환 결과이다. $\tau_i = (d_i - d_0)/c$ 는 직접 경로와의 시간차이다. 이와 같이 수중 환경에서는 직접경로에 비하여 지연되어 다수 개의 음파 신호가 수신되므로 이를 고려하여 심볼간 간섭을 최 소화하기 위하여 변조기법의 파라미터를 설계 하여야 한다.

3. 도플러 영향

수중채널에서 표면에서의 산란이 일어나며 평평 한 해수면에 서 대부분의 입사파는 π만큼의 위상 변화를 가지며 완벽하게 반 사된다. 그러나 풍속에 의한 너울에 의해 반사 지점 이동이 발 생하므로 음파 에너지의 분산이 발생한다. 이와 같은 반사 지점 의 이동은 도플러 확산 현상을 야기하며 이는 가우시안 랜덤 변 수로 모델링할 수 있다. 반송파 주파수가 f 趾인 신호의 도플러 확산은 다음과 같다[9].

$$f_{doppler} = (0.0175/c) f w^{3/2} \cos\theta \tag{8}$$

여기서 *c*는 음속으로 염분, 수온, 수압 등의 영향을 받지만 일반적으로 1500 %이며, *w*는 해수면 풍속, *θ*는 지표각을 나 타낸다. 높은 반송파 주파수를 사용하면 가용대역폭이 증가하 는 장점이 있으나 도플러 확산이 매우 크게 증가하는 문제가 발 생한다. 따라서 수중음향통신 시스템을 설계를 위하여 반송파 주파수 선택에 따른 가용 대역폭과 도플러 확산의 관계를 고려 하여야 한다. 즉 도플러 확산은 채널의 상관시간과 관계되므로 이를 고려하여 변조기법의 파라미터를 선정 하여야 한다.

4. 수중환경 잡음

수중환경의 전체 잡음(N)은 난류에 의한 잡음(N_t), 선박에 의한 잡음(N_s), 바람에 의한 잡음(N_w), 열잡음(N_{th})으로 표현 되고 4가지의 합으로 모델링 되며 다음 식과 같이 수학적 모델 링한다 [4][5].

$$N(f) = N_{t}(f) + N_{s}(f) + N_{w}(f) + N_{th}(f),$$

$$10 \log N_{t}(f) = 17 - 30 \log(f),$$

$$10 \log N_{s}(f) = 40 + 20(s - 0.5) +$$

$$26 \log(f) - 60 \log(f + 0.03),$$

$$10 \log N_{w}(f) = 50 + 7.5w^{\frac{1}{2}} + 20 \log(f) - 40 \log(f + 0.4),$$

$$10 \log N_{th}(f) = -15 + 20 \log(f)$$

(9)

여기서 *f* 는 주파수로써 4가지 잡음은 주파수에 영향을 받는 것을 알 수 있다. 〈그림 3〉은 주파수 에 따른 수중환경의 잡음 종류별 크기 및 전체 잡음의 크기를 표시한 것이다. 주파수가 높아짐에 따라 열잡음은 증가하는 경향을 보이며 난류에 의한 잡음, 선박에 의한 잡음, 바람에 의한 잡음 등은 감소하는 경

그림 3. 주파수에 따른 수중 환경의 잡음 종류별 크기 레벨과 전체 잡음 레벨

향을 가지는 것을 알 수 있다.

전체적인 잡음의 크기는 주파수가 증가함에 따라 감소하는 경 향을 보인다.

Ⅲ. 수중음향통신을 위한 링크버짓 계산

수중음향채널을 이용한 통신을 위해서는 통신 링크의 신뢰성 을 보장할 수 있는 링크버짓의 측정이 필요하다. 특히 수중음향 채널은 앞절에서 언급한 것과 같이 주파수 대역에 따른 채널 감 쇠의 차이가 매우 크므로 주파수 대역별 음파의 통달거리가 큰 차이를 보인다. 그러므로 수중통신 시스템 설계에 있어 주파수 별 링크버짓의 계산이 중요하다[10].

일반적인 통신시스템의 링크버짓은 아래 식과 같이 송신 전 력, 송신 안테나 이득, 채널 감쇠, 채널 잡음과 수신 안테나 이 득을 고려하여 계산하여야 한다[11].

$$P_{R} = P_{T} + G_{T} + G_{R} + L_{S} + L_{n}$$
(10)

여기서 P_R 은 수신 전력이고 P_T 는 송신 전력, G_T 는 송신 안 테나 이득이다. G_R 는 수신 안테나 이득이고 L_s 는 자유공간 경로 감쇠, L_n 은 잡음과 간섭의 크기이다. 수중음향통신 시 스템을 위해 식(10)을 적용하여 링크버짓을 계산하기 위해서 는 P_T 는 송신 음압 스펙트럼 레벨(Pressure Spectrum Level, PSL)로 대체하고 G_T 와 G_R 은 송수신 음파의 지향성 지수 (DI_T, DI_R) 로 변경하여 계산해야 한다. L_s 는 앞절에서 살펴 본 식(2)의 수중에서의 경로 감쇠식(*TL*)으로 *L_n*은 식(9)의 수 중환경에서의 잡음(*AN*)으로 대체하여 다음과 같이 수중음향 통신 시스템에서의 수신 신호의 SNR을 계산할 수 있다.

$$SNR_{R} = PSL - TL - AN - DI_{T} + DI_{R}$$
(11)

여기서 PSL 은 다음과 같이 정의하고 있다.

$$PSL = 10\log(P_T) + 170.8 - 10\log_{10}(W)$$
(12)

여기서 W 는 사용주파수 대역폭을 의미한다. 식 (11)과 (12) 의 값의 단위는 dB re uPa@1m 이다.

링크버짓을 구하기 위해서는 식(10)의 수신전력 P_R 값을 다음 과 같이 Eb/NO로 변환한다.

$$\left(\frac{E_b}{N_0}\right)_R = P_R \times \left(\frac{W}{D}\right) \tag{13}$$

여기서 *D*는 시스템의 데이터 전송속도를 의미하고, *W* 는 사용주파수 대역폭을 의미한다. 이와 같이 얻어진 수신신호의 Eb/NO와 요구되는 Eb/NO값을 이용하여 다음 식과 같이 링크 마진을 얻을 수 있다.

$$LM = \left(\frac{E_b}{N_0}\right)_R - \left(\frac{E_b}{N_0}\right)_{\text{Req}}$$
(14)

〈그림 4〉는 거리와 주파수에 따른 링크마진이며 5kHz의 대 역폭을 사용하고PSL=150.8로 가정하고 *DI_T* 와*DI_R*는 없고, *N_w* = 2*kn* 이고 *N_s* = *low* 로 가정한 것이다. 〈그림 4〉 결과를 통해 30kHz 대역의 음파는 약 4km의 거리에서 약 30dB의 링 크 마진를 가지는 것을 확인할 수 있다.

Ⅳ. 수중음향통신을 위한 변조 기법

수중음향통신을 위한 변조기법으로 과거에는 FSK(Frequency Shift Keying)등과 같은 비동기 위상변조기법 등을 이 용하였으나 최근에는 동기식 처리기법의 발전으로 PSK(Phase Shift Keying) 등의 다양한 연구가 진행되고 있다. 특히 최근 에는 대역확산(Spread Spectrum), OFDM (Orthogonal Frequency-Division Multiplexing)과 같은 전송기법 등이 활발히 연구되고 있다[1]. 본 절에서는 대역확산 전송기법, OFDM 전 송기법에 대하여 자세히 살펴본다.

1. 대역확산 기법

대역확산 기법은 변조 시 임의의 신호를 이용하여 전송하고 자 하는 신호가 가지는 대역폭 보다 넓은 대역폭을 가지도록 신 호의 대역폭을 확산하여 통신을 하는 방식을 말한다. 이와 같은 대역확산 기법을 다중경로가 많이 발생하는 수중채널 환경에서 강건한 특성을 가지고 코드화 되어 은밀한 전송을 할 수 있는 장점이 있다.

대역폭의 확산은 데이터와는 무관한 의사 잡음(Pseudo Noise :PN) 부호를 이용하여 신호의 대역폭을 확산시킨다. 이때 확산 신호 안의 기본 펄스를 칩(chip)이라 하고, 칩의 비트율은 칩율 (chip rate)이라고 한다. 이때 칩율은 변조된 신호의 비트율 보 다 높게 설정되어야 한다. 이와 같은 대역확산 기법은 직접수 열, 주파수 도약, 시간 도약 및 혼합된 방식 등으로 활용된다.

본고에서는 직교 진폭 변조(QAM) 신호를 직접수열 대역확산 기법을 기반으로 설명한다. QAM 변조된 신호 d(t)는 PN 코 드 c(t)와 곱해져 대역확산 된 전송 신호 x(t)를 아래 식과 같이 표현할 수 있다.

$$x(t) = \operatorname{Re}\left\{d(t)c(t)\exp\left(-i2\pi f_{c}t\right)\right\}$$
(15)

여기서 f_c 는 반송파 주파수이며 송신신호 x(t)가 수중채널 을 통과해 수신된다. 수신된 신호에 PN 코드를 다시 곱하여 역 확산을 통해 수신신호를 본래의 신호로 전환을 통해 송신신호 를 검출할 수 있다. 이때 동기가 완벽하다면 $c^2(t)=1$ 의 특성 을 가지므로 역확산을 하면 원래 신호는 역확산되어 복원되지 만 지연되어 수신된 신호는 역확산이 되지 않아 다중경로에 의 한 인접 심볼 간섭이 극복되게 된다.

2. OFDM 전송기법

수중음향통신에 사용되는 대표적인 다중 반송파 변조기법으 로 OFDM 기법이 있다. 극심한 채널 변화를 갖는 수중채널 환 경에서 단일 반송파 전송 방식을 사용하게 되면 주파수 선택적 채널이 되어 이를 보상하기 위해 복잡한 등화기의 설계가 필요 하지만 OFDM과 같은 다중 반송파 방식을 사용하면 각 부반송 파 단위로 데이터 심볼의 채널 등화를 수행하기 때문에 간단한 등화기를 사용 하여 심볼 복원이 가능해지는 장점이 있다. 그러 므로 OFDM 기법은 주파수 선택적이고 긴 지연 시간을 가지는 수중음향채널에서 단일 반송파 기법에 비하여 강건한 성능을 보인다.

〈그림 5〉는 OFDM 기법의 일반적인 송수신 과정을 나타낸 것이다. 전송할 데이터는 PSK 혹은 QAM의 데이터 심볼로 변 환되고, 직병렬 변환(serial to parallel: S/P)에 의해 병렬화 된 다. 병렬화 된 심볼은 역 고속 푸리에 변환(IFFT)을 통하여 반 송파로 변조되고 합해져 OFDM 심볼을 구성하게 된다. 각 반 송파를 부반송파(Sub-Carrier)라고 하며 전송되는 n 번째 OFDM 심볼 x(n)은 다음 식과 같이 표현된다.

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \exp\left(j\frac{2\pi}{N}nk\right)$$
(16)

여기서 x(n)은 OFDM 심볼을 의미하며, X(k)는 입력 데 이터이고 N은 부반송파의 개수를 의미 한다. 송신신호 x(n)은 반송 주파수 f_c 를 곱하는 디지털 업 컨버젼을 통하여 대역 통과 신호를 아래 식과 같이 생성 후 대역통과 필터를 거친 후 D/A 변환기를 통하여 생성된 아날로그 신호는 송신 앰프와 트 랜스듀서를 통하여 수중채널로 전송된다.

$$x_{TX} = x(n) \cdot \exp(j2\pi f_c n) \tag{17}$$

이와 같이 송신된 신호가 수중채널에 의하여 왜곡된 수신신호

가 A/D 변환기와 디지털 통과대역을 통과한 후 디지털 다운 컨 버젼을 거치면서 기저대역 신호가 아래 식과 같이 수신된다.

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) X(k) \exp\left(j2\pi \left(\frac{f_{offset}}{\Delta f} + k\right)(n+\delta)\right) + AN \quad (18)$$

여기서 f_{offset} 은 수신신호의 주파수 오프셋, δ 는 심볼 오프셋 을 의미한다. 수신신호 y(n)은 직병렬 변환기를 거쳐 다시 병 렬화되며 보호 구간을 제거한 후 고속 푸리에 변환(FFT)을 한 것이다. 수신신호 y(n)에서 채널 추정을 위한 파일럿 데이터 를 이용하여 채널 추정 후 보상을 수행하고 복조가 이루어진다.

V. 수중채널 환경을 고려한 OFDM 기반 물리계층 설계 및 성능

수중음향채널은 도플러 확산이 크게 발생하므로 주파수 오프 셋에 의한 OFDM 직교성이 무너져 인접채널 간섭(ICI)에 민감 하므로 부반송파 간 직교성이 유지되는 범위 내에서 부반송파 대역폭 과 심볼 주기를 조절해야 한다. 또한 다중경로에 의해 발생할 수 있는 인접심볼 간섭(ISI)를 해결 하기 위하여 OFDM 심볼 사이에 최대 지연확산 (Maximum delay spread)보다 긴 보호구간을 삽입해야 한다. 이와 같이 OFDM 전송기법을 수중 음향채널 환경에 적용하기 위해서는 수중음향 환경의 모델링을 통하여 상관대역폭 및 상관 시간을 고려하여 OFDM 시스템을 설계하여야 한다. 그러나 수중채널은 앞에서도 설명했듯이 주 파수, 거리, 수온, 염도, 수압, 풍속, 해저면 성분 등에 영향을 받기 때문에 모든 요소를 반영하는 것은 거의 불가능하여 확정 적, 통계적 모델링이 존재하지 않는다[13]. 그러므로 현재 대부 분의 연구는 실험하고자 하는 실해역의 실측 데이터와 해양 환 경자료 분석을 통하여 해당 지역의 수중채널을 대략적인 모델 링함으로써 실제 환경에 근접하다라고 가정하고 시뮬레이션이 가능하다.

본 고에서는 한반도 서해 당진 장고항 앞바다 에서의 실해역 측정 결과와 실험지역 한국해양 자료센터에서 제공하는 음속 및 수온 정보를 이용하여 수중채널을 모델링하고 이에 적합한 OFDM 주요 파라미터를 선정에 대하여 설명한다. 그리고 모델 링한 수중채널을 기반으로 설계된 OFDM 기법을 적용하여 성 능을 확인한 결과를 설명한다.

〈표 1〉은 서해 천해역 수중채널을 측정하게 위하여 10kHz의
 반송주파수를 사용하여 측정한 최대 지연 확산과 RMS지연 확
 산 값을 표시한 것이다. 실험결과를 기반으로 최대 지연 시간은

대략 20ms, RMS 지연 확산은 대략1.45ms 이므로 90% 상관 도를 기준으로 채널상관 대역폭을 계산하면 13.8Hz임을 알 수 있다.

〈표 2〉는 상관시간으로 최대 도플러 확산은 2Hz로 가정할 수 있으며 결과적으로 채널 상관 시간은 500ms가 된다. 그러나 이는 한정된 실험결과 이므로 최대 도플러 확산을 4Hz로 가정 하여 사용 대역폭 5kHz와 10kHz에 대하여 OFDM 심볼의 주 요 파라미터를 선정하면 〈표 3〉과 같이 정리할 수 있다.

표 1	1.거리에	따른	RMS	지연	확산과	상관대역폭
-----	-------	----	-----	----	-----	-------

Deremeter	Distance(m)				
Parameter	< 500	1000	2000	3000	
RMS Delay Spread(ms)	1.422	0.408	0.112	0.100	
Coherence Bandwidth(Hz) (Corr.=0,5)	140.65	490.19	1785.71	2000	
Coherence Bandwidth(Hz) (Corr.=0,9)	14,07	49.02	178.58	200	

표 2. 거리에 따른 도플러 확산과 상관 시간

Parameter	Distance (m)				
Farameter	< 500	1,000	2,000	3,000	
Doppler Spread(Hz)	1,968	0.593	1,249	0,483	
Coherence Time(sec)	0,508	1,686	0.800	2,070	

표 3. 실해역 측정 기반 상관대역폭과 상관시간을 고려한 OFDM 파라미터

항목	파라미터 값		
Bandwidth (W)	5kHz	10kHz	
Subcarrier Frequency Spacing	9.765625Hz	9,765625Hz	
Guard Time(Tg)	22,6ms	22.6ms	
FFT Size	512	1024	
Effective OFDM Symbol Duration(Td)	102,4ms	102,4ms	
OFDM Symbol Length(Ts)	125ms	125ms	

최대 지연 확산을 고려하여 OFDM 심볼의 CP 구간(Tg) 을 22.6ms, 실효 OFDM 심볼의 길이(Td)는 4.5Tg값인 약 102.4ms로 설정하면 전체 OFDM 심볼의 길이(Ts)는 125ms가 된다. 신호의 대역폭을 5kHz로 가정한 경우 512 크기의 FFT 블록을 이용하면 부반송파의 간격이 9.765625Hz이므로 채널 상관 대역폭인 13.8Hz보다 작으므로 단일 탭 채널 보상이 가능

하게 된다. 사용대역폭 10kHz에서는 1024 크기의 FFT를 사용 함으로써 부반송파의 간격 등 주요 파라미터를 모두 동일 하게 설정할 수가 있다.

이와 같이 실측한 채널을 이용하여 OFDM 파라미터를 설정할 수 있으며 이를 기반으로 실측 채널과 유사하도록 BELLHOP 기반으로 k-factor와 delay profile을 설정하여 수중 채널을 모델링 할 수 있으며 〈그림 6〉은 모델링 채널의 Power delay profile과 주파수 응답이다[14].

〈표 3〉과 같이 설정한 파라미터 기반의 OFDM 변조기법을 적 용하여 〈그림 6〉과 같이 모델링한 수중채널을 이용하여 성능비 교를 하였다. 〈그림 7〉은 이상적인 채널추정 및 보상을 한 경우 에 OFDM 전송기법의 BER성능이며 Convolution coding을 이 용하였다. 〈그림 8〉은 Comb 구조로 부반송파 3개 간격으로 배 치한 파일럿을 이용하여 채널을 추정하여 보상한 경우에 BER 성능이다. 이 경우에 채널 코딩을 하지 않는 경우 성능 열화가 심한 것을 볼 수 있다.

〈그림 9〉는 Lattice 구조로 부반송파 2개 간격과 3개 OFDM 심볼마다 파일롯을 배치한 경우의 BER 성능으로 그림8의

그림 7. 완벽한 채널 추정 및 보상이 이루어진 경우의 OFDM BER 성능 비교

그림 8. Comb 구조의 파일럿을 이용한 채널 추정 및 보상을 한 경우의 OFDM BER 성능 비교

Comb 구조에 비해서 성능열화가 매우 크다. 이는 모델링된 수중채널이 최대 4Hz의 도플러 확산을 고려하여 상관시간을 250ms로 설정하였기 때문에 2개 OFDM 심볼마다 파일롯을 배 치해야 하기 때문이다.

이 결과를 통해 알 수 있듯이 수중채널은 주파수와 시간 영역 에서 매우 급격하게 변하는 doubly selective 페이딩 채널임을 알 수 있다. 그러므로 채널 추정을 위하여 많은 파일럿이 필요 함을 알 수 있다. 이는 수중채널환경에서 전송률을 높이는데 한 계가 된다. 그러나 실제 수중채널은 다양한 조건에 의해서 상관 대역폭이나 상관시간이 변할 수 있으므로 이에 적응적으로 변 조기법이나 채널 코딩율, 파일럿 간격 등을 조절할 수 있다면 본 고에서 가정한 하나의 채널모델이 아닌 다양한 실제 환경에 서는 전송율을 높이거나 안정적인 통신환경을 유지할 수 있을 것으로 기대된다.

참고문헌

- S. Zhou and Z.-H. Wang, "OFDM for Underwater Acoustic Communications," John Wiley and Sons, 2014.
- [2] D. Kilfoyfe and A. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 4-27, Jan. 2000.
- [3] I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater Acoustic Sensor Networks: Research Challenges," Ad Hoc Networks (Elsevier), vol. 3, no. 3, pp. 257-279, Mar. 2005.
- [4] M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization,"IEEE Commun. Mag., vol. 47, no. 1, pp. 84-89, Jan., 2009.
- [5] M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communi– cation channel," in Proc. WUWNet, Los Angeles, CA, Sept. 2006.
- [6] M. Ainslie and J. McColm, "A simplified formula for viscous and chemical absorption in sea water," J. Acoust. Soc. Am., vol. 103, no. 3, pp. 1671-1672, Mar. 1998.
- [7] X. Lurton, "An Introduction to Underwater Acoustics: Principles and Applications," Springer, 2 edi-

tion, 2010.

- [8] L. M. Brekhovskikh and Yu. P. Lysanov, "Fundamentals of Ocean Acoustics," Springer, New York, 3 edition, 2003.
- [9] M. Stojanovic, "Acoustic (underwater) commun-ications," in Encyclopedia of Telecommunica-tions, J. G. Proakis, Ed. John Wiley and Sons, 2003.
- [10] Y. Mohsin Hasan and N. Khamis, "Link Budget Analysis for Underwater Communication System," Int. J. of Electrical and Electronics Research, vol. 2, no. 4, pp.195-200, Dec. 2014.
- [11] J. G. Proakis, "Digital communications," Mc-Graw-Hill, Inc., 1995.
- [12] M. Stojanovic, "Underwater Acoustic Communica-tions: Design Considerations on the Physical Layer," Wireless on Demand Network Systems and Services, Jan. 2008.
- [13] B. C. Kim and I. T. Lu, "Parameter Study of OFDM Underwater Communications System," in Proc. of MTS/IEEE Oceans, Rhode Island, Sep. 2000.
- [14] M. B. Porter, "The Bellhop manual and user's guide" (http://oalib.hlsresearch.com.)

임 태 호

약 력

2006년 중앙대학교 전자전기공학부 졸업 2008년 중앙대학교 전자전기공학부 석사 2012년 중앙대학교 전자전기공학부 박사 2012년~2015년 삼성전자 DMC연구소 책임연구원 2015년~현재 호서대학교 해양IT융합기술연구소 조교수 관심분야: 이동통신, IoT 통신, 수중통신, 해양통신

1983년 숭실대학교 전자공학과 졸업 1986년 Fairleigh Dickins on Univ. 전기 및 컴퓨터 공학과 석사 1995년 North Carolina state Univ. 전기 및 컴퓨터 공학과 박사 1996년~현재 호서대학교 정보통신 공학과 교수 관심분야: 스마트 안테나 시스템, 이동통신, 수중통신, 해양통신

고 학 림