• 제목/요약/키워드: 수중불분리성 콘크리트

검색결과 53건 처리시간 0.022초

광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구 (A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures)

  • 문한영;신국재;이창수
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

비약액계 급결성 숏크리트재의 강도특성과 친환경성 (The Strength and Environmental Friendly Characteristics of Non-chemical Accelerating Shotcrete)

  • 천병식;박덕흠;강형남;도종남
    • 한국지반환경공학회 논문집
    • /
    • 제9권5호
    • /
    • pp.29-36
    • /
    • 2008
  • 숏크리트는 NATM공법에서 터널 굴착 후 지반안정을 위한 주요 지보재로서 시공기간의 단축과 시공비용 절감을 위해 일반콘크리트 라이닝을 대신하여 영구 숏크리트 라이닝의 사용이 요구되고 있는 추세이다. 이러한 영구 숏크리트 라이닝으로 사용하기 위해 고성능고강도 숏크리트가 요구되고 있으며, 인체에 대한 유해성 및 환경오염의 감소방안도 해결해야 할 문제로 부각되고 있다. 따라서, 본 연구에서는 NATM공법 시공시 조기에 고강도 발현이 가능한 숏크리트재료를 개발하기 위하여 시멘트광물계 급결재를 사용하여 강도측정용 공시체를 제작하여 기존에 쓰여지고 있는 숏크리트재료와 비교하여 일축압축시험, 휨강도시험, 수중불분리시험을 실시하였고, 환경영향성을 평가하기 위해 어독성시험을 실시하였다. 시험결과, 일축압축강도 및 휨강도는 연구대상재료의 재령 7일강도가 기존재료의 28일 강도와 대등하였으며, 수중불분리시험 결과 연구대상재료의 불분리성이 우수하게 나타났다. 환경영향성(어독성시험)평가 결과 기존숏크리트에 비해 연구대상재료가 친환경적인 것으로 나타났다.

  • PDF

고로슬래그미분말을 활용한 수중불분리성콘크리트 (Properties of Antiwashout Underwater Concrete Using the GGBF Slag)

  • 문한영;김성수;이병덕;이재준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.83-86
    • /
    • 1998
  • Recently, underwater concrete constructions are increasing. Therefore it is considered important to control the quality of underwater concrete. In this paper, we have an intention of evaluating fundamental properties of underwater concrete using the Ground Granulated Blast Furnace Slag (GGBF Slag). Thus, it has been investigated that the slump flow of the concrete, pH value and suspended solids in solution, compressive strength on both of specimens made above and below water. Also the percentage of GGBF Slag was found to alter the filling-up in underwater concrete.

  • PDF

수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구 (Water temperature effects on the early strength characteristics of antiwashout underwater concrete)

  • 이승훈;정재홍;안태송;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

수중불분리성 콘크리트의 해수침식에 대한저항성 평가 (Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete)

  • 문한영;김성수;안태송;이승태;김종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

플라이애시를 혼합한 수중불분리성 콘크리트의 제물성 (Properties of Antiwashout Underwater Concrete Containing Fly Ash)

  • 문한영;김성수;이재준;전중규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.609-612
    • /
    • 1999
  • Recently, the antiwashout underwater concrete with an antiwashout admixtures has been increasingly used for underwater structures. However, the credibility of antiwashout underwater concrete was brought up as problems because it seldom was applied to fields. In this study, experiments were made on the basic properties of antiwashout underwater concrete replaced with fly ash up to 30% to improve its properties. Resultant to the test, we got the results as follow; funnel flow time was decreased, the slump flow was increased and the elevation of head was decreased rapidly whereas the amount of suspended solids became high, pH became low. In view of 70%, the standard ratio of compressive strengths between cast in water and in air, it was obtained the result that the ratio was over 90% at 28days.

  • PDF

수중 콘크리트 구조물을 위한 광물질 혼화제를 첨가한 수중불분리성 콘크리트의 특성 (Characteristics of Antiwashout Underwater Concrete with the Mineral Admixtures for Underwater Concrete Structures)

  • 원종필;임경하;박찬기;김완영
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.90-98
    • /
    • 2002
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aim of this research is to evaluate the fundamental characteristics and permeability of antiwashout underwater concrete with fly ash and blast-furnace slag. Test Results of antiwashout underwater concrete with fly ash and blast-furnace slag fluence can provide its excellent fundamental characteristics and resistance of permeability.

고로슬래그 미분말을 혼합한 고강도 수중불분리성 콘크리트 (High-strength Antiwashout Underwater Concrete Containing the GGBF Slag)

  • 문한영;송용규;전중규;김태욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.199-202
    • /
    • 1999
  • Recently, the antiwahout underwater concrete with an natiwashout admixture has been increasingly used for underwater structures. However, the credibility of antiwahout underwater concrete was brought up as problems because it was seldom applied to fields. In this study, experiments were made on the basic properties of antiwashout underwater concrete replaced with GGBF Slag from 40% to 60% to improve its properties. Resultant to the test, we got the results as follows; the difference of U-type heght was decreased, and the slump flow was increased. Whereas the amount of suspended solids became high as to increasing the replacement ratio of GGBF Slag, pH value became low. Beacause the ratio of compressive strengths (in water compared to in air) at 28days was obtained over 90%, its value is satisfied with 70% of a criterion.

  • PDF

잔골재의 종류에 따른 수중불분리성 콘크리트의 특성에 관한 연구 (Study on the Properties of Antiwashout Underwater Concrete as to Fine aggreate Kinds)

  • 박세인;신현필;이환우;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.941-946
    • /
    • 2001
  • In this study, three kinds of fine aggregate (river sand, sea sand, crushed sand) were used and four different s/a (38%, 40%, 42%, 45%) were applied separately to this experimental for get the conclusion written below. Regardless of kinds of fine aggregate and casting-curing condition, maximum unit weight is seen at 40% of s/a and also to be seen in case of crushed sand. It's for that specific gravity of crushed sand is bigger comparatively than river sand and sea snad's one. Compressive strength is measured river sand, crushed sand, sea sand by order of size ; Regardless of variation of s/3, casting-curing condition and age. Compressive strength recorded maximum when s/a is 42% whatever sort of fine aggregate are. As the result, according to references, the optimum s/a of underwater antiwashout concrete is 40% but in this study, from compressive strength of view, the optimum s/a of underwater antiwashout concrete is 42%.

  • PDF

부순모래 혼입률 변화에 따른 수중불분리성 콘크리트의 특성 연구 (Study on the Properties of Antiwashout Underwater Concrete with Variation of Blend Ratio of Crushed Sand)

  • 박세인;오광영;이환우;김종수;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.427-432
    • /
    • 2001
  • In this study, crushed sand is blended with river sand and sea sand, to investigate the quality change of antiwashout underwater concrete with variation of blend ratio of crushed sand(0%, 20%, 40%, 60%, 80%, 100%). To see experiment conclusion, the more blend ratio of crushed sand increases, the more unit weight increases. Because the for that specific gravity of crushed sand is higher comparatively than that of river sand and sea sand. Higher compressive strength is measured following the order of river sand, crushed sand, sea sand regardless of age and casting-curing condition. Except for case of using river sand, blend ratio of 40% is appeared on most compressive strength. So the optimum blend ratio of crushed sand is 40% from the view point of compressive strength.

  • PDF