• Title/Summary/Keyword: 수중불분리성

Search Result 67, Processing Time 0.026 seconds

Estimation on Corrosion of Reinforcing bar in Antiwashout Underwater Concrete (수중불분리성 콘크리트 중의 철근부식 평가)

  • 문한영;김성수;김홍삼;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.447-450
    • /
    • 2000
  • Recently, antiwashout underwater concrete has used for underwater structure such as high strength massive concrete structures. When, concrete is placed in seawater the quality and durability of concrete could be doubt to especcially because the amount of cement placed in the concrete can be diminished by flowing seawater. In this study, antiwashout underwater concrete mixed with mineral admixtures for improvement of properties was placed in air, water, and salt water. Half-cell potential and current density was of specimens which made under different conditions measured for estimating corrosion degree. The experimental results demostrate that corrosion resistantce in saltwater was little and mineral admixtures improved properties of concrete.

  • PDF

An Effect on the Properties of Antiwashout Underwater Concrete by mixing time and mixing quantity (배합시간과 배합량이 수중불분리성 콘크리트의 특성에 미치는 영향)

  • 박세인;김동명;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.345-350
    • /
    • 2000
  • The objective of this study makes investigation into the effect on the properties of underwater antiwashout concrete. which is followed by mixing time and mixing quantity. There is an tendency that (the compressive strength of underwater antiwashout concrete made and cured in fresh water or sea water) is increase when dry mixing time, mixing quantity, total mixing time is increase as unit weight grows. The difference of compressive strength (in case of no dry mixing time and 60 second) is averagely 46.8kgf/㎠ in the fresh water and 35.6kgf/㎠ in sea water. it's considered that dry mixing is dispersed by underwater antiwashout admixture.

  • PDF

Study on the Properties of Antiwashout Underwater Concrete with Variation of Mixing Proportion of Fine Aggregate Types (잔골재의 혼합비율 변화에 따른 수중불분리성 콘크리트의 특성에 관한 연구)

  • 배원만;박세윤;백동일;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.533-536
    • /
    • 2003
  • The objective of in this study makes investigation into the characteristics of antiwashout underwater concrete as to mix proportion, casting and curing water through experimental researches. in this study, sea sand is blended with river sand, crushed sand is blended with river sand and sea sand as to investigate the quality change and characteristics of antiwashout underwater concrete with variation of blend ratio of sea sand and crushed sand(0, 20, 40, 60, 80, 100%). Higher compressive strength is measured following the order of river sand, sea sand, crushed sand regardless of age and casting condition. Except for case of using river sand, blended ratio of 40% is appeared on most compressive strength.

  • PDF

Mechanical and Physical of Antiwashout Underwater Concrete under Different Curing Temperature (양생온도에 따른 수중불분리성 콘크리트의 물리.역학적 특성)

  • 이병덕;원종필;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.301-307
    • /
    • 1997
  • This paper is evaluated for properties of aggregate and antiwashout admixture not only to minimize segregation and water contamination of underwater concrete but also to meet concrete quality required. Two antiwashout admixtures used in this study were available domestically and slump flow, pH, setting time, and filing property of fresh concrete and the compressive strength, flexural strength under water and in the air under 2 different curing conditions ($10^{\cire}C$ and $20^{\cire}C$ ) were measured. Compressive strength ratio of specimens cured in and water temperature $10^{\cire}C$ /$20^{\cire}C$ added HPEC and HPMC was 64% and 89%, respectively. Relative compressive strength of 2 kinds observed higher concrete added HPEC, 3% at $10^{\cire}C$ curing temperature, 34% at $20^{\cire}C$ . The flexural strength of specimens made under water was 1/4~1/6 of compressive strength similar to the existing data in the literature.

  • PDF

Durability Properties of Ultra Rapid Hardening Mortar Produced with Alumina-based Binder for Repairing Sewage Treatment Pipes (하수관거 보수용 알루미나계 결합재 초속경 모르타르의 내구 특성)

  • Eun-Ho, Kim;Byung-Jae, Lee;Sun-Mok, Lee;Yun-Yong, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.482-488
    • /
    • 2022
  • In this study, the durability of ultra rapid hardening mortar for sewage pipe was evaluated by type of mortar binder. As a result of analyzing the internal structure for each type of mortar, it was confirmed that Al2(OH)3 was generated in the internal structure of the CAC-based mortar, and its corrosion resistance was superior to that of other types of mortar. As a result of the compressive strength test, OPC had the tsmallest strength, followed by CAC100 > CAC100P > CAC80. This trend was similar to the previous study results. Chloride ion penetration resistance and freeze-thaw test showed similar trends. That is, CAC and C12A7 were better than OPC, and CSA was worse than OPC. This is mostly beacuse of cracks caused by expansion of CSA-based mortar. CAC100P mix showed the best chemical resistance. It is thought that this is because the alumina gel formed inside the mortar and the polymer combine to make the internal structure more dense.

Study on the Long age Strength Properties of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 장기강도 특성에 관한 연구)

  • 박세인;이동화;김종수;김명수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.113-117
    • /
    • 2000
  • The objective of this study is to find the long-age strength property and the compressive strength of age which is used as the specified concrete strength. The W/W ratio (45%, 50%, 55%, 60%) fine aggregate of useful river sand or blended sand(river sane : sea sand=1:1) were chosen as the experimental parameters. the experimental results show that pH(it means the material segregation resistance) & suspension were increased larger, so W/C become larger, and slump flow was increased as W/C increased (except W/C=60%), air-contents were decreased as W/C became increase and all of this results are satisfied with the under of 40%. The compressive strength ( a case use only river sand as fine aggregate) is showed less than the case of blended asnd. Because the unit weight of the blended sand is more heavy than the unit weigh of the river sand. The results of the case which haven been used only river sand, and the case have been used blended sand), both case have considered W/C. So it's possible to use the compressive strength of age 28 day like the case of plain concrete.

  • PDF

A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean (수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구)

  • 김명식;윤재범;박세인
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

Bond Strength Properties of Antiwashout Underwater Concrete (수중 불분리성 콘크리트의 부착 강도 특성에 관한 연구)

  • 김명식;김기동;윤재범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.89-99
    • /
    • 2000
  • The objective of this study is to investigate the bond strength properties of antiwashout underwater concrete. The arrangement of bars (vertical bar, horizontal upper bar, horizontal lower bar), condition of casting and curing (fresh water, sea water), type of fine aggregate (river sand, blended sand(river sand : sea sand = 1:1), and proportioning strength of concrete (210, 240, 270, 300, 330kgf/$\textrm{cm}^2$)are chosen as the experimental parameters. The test results(ultimate bond stress) are compared with bond and development provisions of the ACI Building Code(ACI 318-89) and proposed equations from previous research(which was proposed by Orangun et. al). The experimental results show that ultimate bond stress of antiwashout underwater concrete which arranged bar on the horizontal lower, used the blend sand, and was cast and cured in the fresh water are higher that other conditions. The ultimate bond stress were increased in proportion to {{{{( SQRT {fcu }) }}3 2. From this study, rational analytic formula for the ultimate bond stress are to be from compressive strength of concrete.

Fundamental Properties High-Strength Antiwashout Underwater Concrete (고강도 수중불분리성콘크리트의 기초물성에 대한 연구)

  • Moon, Han-Young;Kim, Seong-Soo;Song, Yong-Kyu;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.195-198
    • /
    • 2000
  • Recently, the anriwashout underwater concrete has been increasingly used for underwater structures such as vary high diaphrame walls of high strength massive concrete structures. In this study, experiments were made on the fundamental properties of antiwashout underwater concrete replaced with Fly Ash from 10% to 30% to improve its properties. Resultant to the test, we got the results as follows; the value of slump flow wasi ncreased, the setting, time was very delayed, and the heat evolution amount decreased, whereas the amount of suspended solids became high, and pH value became low as to increasing the replacement ratio of Fly Ash. Also the ratios of compressive strength (in water compared to in air) at 28day were obtained over 90%, and these values were satisfied with 70% of a criterion.

  • PDF

Development of Rapid Hardening Backfill Material for Reducing Ground Subsidence (지반함몰 저감을 위한 속경형 하수관거 뒤채움재료 개발)

  • Ryu, Yong-Sun;Han, Jin-Gyu;Chae, Woo-Ri;Koo, Ja-Sul;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • Inappropriate backfill material and poor compaction cause the damage to sewer and ground settlement. To deal with such problem, flowable backfill material has attracted attention recently. A basic study was conducted in a bid to obtain optimum mixing ratio of backfill material with the characteristics of rapid hardening, pseudo-plasticity, flowability and anti washout ability and enhance the cost efficiency of backfill material. Through the test of optimal mixing ratio of rapid hardening, evaluation of optimal mixing ratio of backfill material was conducted. As a result, required performance as well as cost efficiency could be achieved by adjusting plasticizer even in case of increasing W/M of the paste of rapid hardening to 100%.