• Title/Summary/Keyword: 수중거동 해석

Search Result 73, Processing Time 0.026 seconds

Prediction of the Unwinding Performance of Optical Fiber Cables by Nonlinear Dynamics Analysis (비선형 동적 거동 해석을 통한 광섬유 케이블의 풀림 성능 예측 연구)

  • Lee, Jae-Wook;Kim, Kun-Woo;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.347-352
    • /
    • 2010
  • Under harsh environments in which remote control is impossible, wire-guided control technology is effective for controlling distant underwater vehicles that serve mother ships in missions, such as exploration and installation. When the fiber is unwound from the spool, tension fluctuations occur in the fiber because of the relative velocity of the moving vehicles and unwinding velocity of the fiber. As a result, fiber cables exhibit complicated behaviors, become entangled, and may get cut. In this study, a spool-like design for winding tens of kilometers of fiber cables is proposed by analyzing cable winding. The unwinding performance of the designed spool is estimated by performing nonlinear dynamics analysis of the nonlinear behavior and tension fluctuations observed during the unwinding of the fiber.

Analysis of Variation of Water Temperature in River using Horizontal 2-D Finite Element Model (수평 2차원 유한요소모형을 이용한 하천에서의 수온 변화 해석)

  • Seo, Il-Won;Choi, Hwang-Jeong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.98.1-98.1
    • /
    • 2010
  • 본 연구에서는 한강 본류 팔당댐부터 잠실수중보까지의 22.5 km 구간에서 발생할 수 있는 수질 오염사고에 대한 오염물질 혼합거동 모의를 위해 RAMS를 이용하였다. 이를 위해서 2차원 흐름모형인 RAM2를 이용하여 유속장을 모의하고, 2차원 수질해석 모형인 RAM4를 이용하여 사고주입에 의한 오염물질의 시간에 따른 거동을 분석하였다. 최종적으로 잠실수중보에 위치한 주요 취수장에 미치는 영향을 분석하였다. 모의를 진행한 결과 오염물질의 이송 및 확산 거동은 투입 위치에 따라 크게 달라진다는 것을 알 수 있었다. 특히 팔당대교에서 투입된 오염물질이 풍납 취수장에 도착하는데 까지 걸리는 시간이 좌안주입과 우안주입의 경우 60시간 가까이 차이가 나는 것으로 나타났다. 따라서 오염 물질이 투입되었을 시에 일괄적으로 취수를 통제할 것이 아니라 상황에 따라 오염물질 투입 지점에 맞춰서 적절한 대책을 세워야 하는 것이 필요하다. 이 때 본 연구가 기초적인 정보를 제공할 수 있을 것이다.

  • PDF

Numerical study on tunnel design for securing stability at connection between submerged floating tunnel and bored tunnel (수중터널 지반 접속부 안정성 확보를 위한 터널 설계에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel that allows tunnel segments to float underwater by buoyancy, and is being actively studied in recent years. When the submerged floating tunnel is connected to the ground, the tunnel and the bored tunnel inside the ground must be connected. There is risk that the stress will be concentrated at the connection between the two tunnels due to the different constraints and behavior of the two tunnels. Therefore, special design and construction methods should be applied to ensure the stability around the connection. However, previous studies on the stability at the connection site have not been sufficiently carried out, so study on the basic stage of the stability at connection site are necessary. In this study, numerical analysis simulating the connection between submerged floating tunnel and the bored tunnel confirmed that the shear strain concentration occurred in the ground around the connection, and it was analyzed that the structural factors can be handled during construction to have effects on the stability of the ground around the connection. Numerical results show that the risks from disproportionate displacements in the two tunnels can be mitigated through the construction of grouting material and joint design. Although the results from this study are qualitative results, it is expected that it will contribute to the determination of structural factors and risk areas that should be considered in the design of connections between the submerged floating tunnel and bored tunnel in the future studies.

Experimental Verification of Unwinding Behavior of Fiber-Optic Cable and Prediction of High-Speed Unwinding (광 케이블 풀림 거동의 실험적 검증 및 고속 풀림 거동 예측)

  • Kim, Kun Woo;Lee, Jae Wook;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 2014
  • Fiber-optic cables towed by underwater vehicles have an important role in enhancing the mission capability of a mother ship. In general, fiber optic cables are unwound in water for securing unwinding stability and preventing unwinding-related problems. Therefore, in this study, the numerically simulated result is verified against the experimental result in water, and the cable-unwinding motion is predicted based on the increase in unwinding velocity. The experimental apparatus is composed of a water tank and a winder, and a high-speed camera is used for photographing the cable-unwinding motion. The numerical result defined in the Cartesian coordinate system is solved using a transient-state unwinding equation of motion. The numerical result agrees well with the experimental result, and it can predict cable-unwinding behaviors in according to an increase in the unwinding velocity.

Analysis on the Dynamic Response of Vertical Pumps Subjected to Arbitrary Foundation Excitation (임의 기초여진에 의한 입형 펌프의 동적 응답해석)

  • 여운동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.57-64
    • /
    • 1990
  • It is important in design of vertical pumps to consider arbitrary foundation excitation in addition to rotor vibration due to unbalance. In this study, a model of a vertical pump was developed for the analysis of its dynamic response. The vertical pump was modeled with lumped masses and springs which represent mult-cylinderical and rotor structure. A dynamic simulation program was developed and numerical calculation on the above mentioned problems were carried out.

  • PDF

Analysis of Bifurcated Superstructure of Nonlinear Ocean System (비선형 해양시스템의 분기된 초구조에 대한 연구)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.96-106
    • /
    • 1998
  • 본 연구에서는 복잡한 비선형시스템의 전체적 응답거동의 중요한 (그리고 잠재적으로 유익한) 특성을 상세히 분석하였다. 특히 강성도 및 여기력에 내재된 복잡한 비선형을 소유하는 수중다점계선해양시스템의 분기집합에 내재된 초구조와 혼돈거동의 가능경로에 대하여 해석적 및 수치적으로 분석하였다. 분기는 국부적 안정해석을 통하여 매개변수 영역상에서 확인되었으며, 정상 상태의 분기초구조는 수치해석을 통하여 밝혀졌다. 비선형정도와 해의 차원을 나타내는 공명수를 유도하였으며, 차수공명수를 통해 공명주위의 구조를 밝혔으며 열조화, 울트라조화, 울트라열조화 등과 같은 고도의 비선형 응답의 발생을 예측할 수 있음을 보였다. 결과에서 얻은 초구조는 시스템의 안정성과 이상끌개의 징후를 지배하는 메커니즘임도 밝혔다. 혼돈으로 가는 주기증가의 무한시퀀스에 대한 유연한 변환 외에 돌연한 격발(saddle에 의해 분리된 인접끌개의 충돌)로 인한 혼돈으로의 가능경로도 발견되었으며 이는 수치적으로도 입증되었다.

  • PDF

Behavior of Mooring Line of Silt Protector According to the Change of Sea Level (조위변화에 따른 오탁방지막 계류라인의 거동)

  • 홍남식;김정윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.232-239
    • /
    • 2002
  • This paper studies the behavior of mooring line of silt protector according to the change of sea level. It is found from the analysis of the behavior that if the taut cable length has been determined appropriately within the range of safety factor, the tensioned cable has almost constant tension regardless of the water depth. The whole structure, however, becomes unstable due to the loss (zero tension) of the released cable tension. It is also recognized from the investigation for the effect of intial straight line angle on the behavior of mooring line that the design through the conceptually combined consideration of the cable tension, total scope and buoy deflection has to be required in the mooring analysis. Finally, the material of cable is not damaged because the cable tension is reduced by attached shellfish, but the whole structure may be also unstable by the effect on the anchor angle, total scope and buoy deflection.

Analysis of Two-dimensional Hydrofoil Problems Using Higher Order Panel Method based on B-Splines (B-스플라인 고차패널법에 의한 2차원 수중익 문제 해석)

  • Chung-Ho Cho;Gun-Do Kim;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.9-20
    • /
    • 1999
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. The self-influence functions due to the normal dipole and the source are separated into the singular and nonsingular parts, and then the former is integrated analytically whereas the latter is integrated using Gaussian quadrature. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution around lifting foils with much fewer panels than existing low order panel methods.

  • PDF

Vessel Collision Analysis of an Underwater Soil Slope using Coupled Eulerian-Lagrangian Scheme 2: Parametric Study (Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 2 : 매개변수연구)

  • Lee, Gyehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, parametric analyses are performed using the coupled Eulerian-Lagrangian scheme for the collision behaviors of a vessel and an underwater slope that constitutes part of an artificial protective island. The vessel parameters considered in the analysis are bow angle, stem angle, draft, and impact velocity. The gradient of the slope, the friction coefficient between the bow and the slope, and soil strength are considered as parameters of the slope. For each parameter, the dissipated collision energy and the collision force are estimated from the behavior of the vessel, and the energy dissipation mechanism is identified in terms of the ground deformation. The collision force is assumed as an exponential function, and the effects of the parameters are estimated. As a result, only two parameters, the gradient of the slope and the friction coefficient between the vessel and the soil, can affect the exponential coefficient of the function. The dissipated energy by the soil can thus be estimated adequately. The relationship between the volume of the soil pushed out by the bow and the dissipated collision energy is estimated as a linear function. This relationship is independent of the magnitude of the collision energy, and affected more by the friction coefficient and the soil strength than by the parameters of the vessel.

Dynamic Analysis of Underwater Test Collector on Extremely Soft Soil (해저연약지반 시험집광기의 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Yeong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.222-228
    • /
    • 2008
  • We conducted a dynamic analysis of an underwater test collector, which operates on extremely soft soil of deep-seafloor. The underwater test collector consists of nodule pick-up device, vehicle tracks, nodule crusher, loading frame and electric-electronic system. The weight of underwater test collector is about 8600 kg. The average normal pressure, that the underwater test collector supports, is about 6.0 kPa. The dynamic analysis model of underwater test collector is developed using commercial software RecurDyn-LM and Visual Fortran 90. A terramechanics model of extremely soft soil is implemented to the software based on user-written subroutine and applied to the dynamic analysis of the underwater test collector model. The dynamic responses of test collector are studied with respect to track velocities, terrain conditions, and coefficients of added mass and drag.