• Title/Summary/Keyword: 수조 실험

Search Result 820, Processing Time 0.027 seconds

Change of Skin Mucus Cells Related to Aerial Exposure of Misgurnus mizolepis (Cobitidae) Dwelling in a Rice Field (논에 서식하는 미꾸라지, Misgurnus mizolepis의 공기노출에 의한 피부 점액세포의 변화)

  • Oh, Min-Ki;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • During the winter, the rice field-dwelling muddy loach Misgurnus mizolepis is buried in burrows constructed of mud and are subjected to exposure to air at times of shortage of water. To investigate the environmental factors that lead to changes of the skin mucus cells of the muddy loach in rice fields, we carried out an experiment where we artificially exposure the fish to air, duplicating as close as possible winter conditions in nature. During the summer, a water tank containing M. mizolepis was filled with mud, and the water was allowed to evaporate. After a month of evaporation, the loach constructed burrows similar to those in a winter rice field. The epidermis in the experimental fish was mostly occupied by large elongated mucus cells, whose numbers drastically increased in all observed regions of the dorsum, lateral region, and the occiput. Such features are typically seen in fishes in wild habitats during the winter season.

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.

Vortex induced vibration of circular pipes; the experiment in a water tank (원형 세장 실린더의 와 유기 진동;수조 실험 결과)

  • Kim, Yang-Hann;Park, Joo-Bae;Hong, Sup;Choi, Yoon-Rak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.478-483
    • /
    • 2001
  • We experimentally attempted to understand the vibration characteristics of a flexible pipe excited by vortex shedding. This has been extensively studied in the past decades (For example, see [2-9]). However, there are still areas that need more study. One of them is to study the relation between spatial characteristics of a flow induced vibrating pipe, such as its length, the distribution of wave number, and frequency responses. A non-linear mechanism between the responses of in-line and cross-flow directions is also an area of interests, if the pipe is relatively long so that structural modal density is reasonably high. In order to investigate such areas, two kinds of instrumented pipe were designed. The instrumented pipes, of which the lengths are equally 6m, are wound with rubber and silicon tape in different ways, having different vortex shedding conditions. One has uniform cross-section of diameter of 26. 7mm, and the other has equally spaced by 4 sub-sections, which are composed of different diameters of 75.9, 61.1, 45.6 and 26.7mm. Both pipes are towed in a water tank (200m ${\times}$ 16m ${\times}$ 7m) so that they experienced different vortex shedding excitations. The towing pipe experiments exhibit several valuable features. One of them is that the natural frequencies and their corresponding strain mode shapes dominate the strain response of the uniform pipe. However, for those of non-uniform pipe, the responses are more likely local and many modes participate in it.

  • PDF

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY (IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구)

  • Kang, H.S.;Ha, K.S.;Kim, S.B.;Hong, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.

Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater (불투과 잠제 전면에서 파랑 작용 하의 세굴 해석을 위한 수치모델의 개발)

  • Hur, Dong-Soo;Jeon, Ho-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.483-489
    • /
    • 2011
  • In this study, the coupled-numerical model has been newly developed to investigate numerically scouring and deposition around a coastal structure like a submerged breakwater using a numerical wave model and a lagrangian particle model for sand transport. As a numerical wave model, LES-WASS-2D (Hur and Choi, 2008) is adopted. The model is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance term and determine the eddy viscosity with LES turbulence model. Distinct element method (Cundall and Strack, 1979), which is able to apply to many dynamical analysis of particulate media, as a lagrangian particle model for sand transport is newly coupled to the numerical wave model. The numerical simulation has been carried out to examine the scour problem in front of an impermeable submerged breakwater using the newly coupled-numerical model. The numerical results has been compared qualitatively with an existing experimental data and then its applicability has been discussed.

Applicability of Permeable Submerged Breakwater for Discharged Flow Control (방류 흐름제어를 위한 투과성 잠제의 적용성 분석)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.51-60
    • /
    • 2016
  • The purpose of this study is to examine the control function of discharged flow due to the shape and plane arrangement of permeable submerged breakwater. For the discussion on it in detail, 3-dimensional numerical model based on PBM (Porous Body Model), which is able to simulate directly interaction of Fluid Permeable structure Seabed has been used to simulate water discharge in a NWT (Numerical Water Tank). To verify the applicability, LES-WASS-3D is analyzed comparing to the experimental result about propagation characteristics of dam-break wave through a permeable structure. Using the results obtained from numerical simulation, the effects of the shape and plane arrangement of submerged breakwater on reducing velocity and flow induction have been discussed related to the mean flow distribution and vertical distributions of horizontal velocities around ones.

Performance Evaluation of Seawater-Exchanging Breakwater Using Helmholtz Resonator (헤름홀츠 공명장치를 이용한 해수교환형 방파제의 성능평가)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2001
  • In the present paper, Helmholtz resonator, which is widely used as a sound-amplification device, is applied to the development of seawater-exchanging breakwater. The incident waves can induce a large response in the resonator when incident wave frequency is close to one of natural modes of the resonator. Largely amplified potential energy due to the resonance supplies clean seawater into the harbor side throughout the channel. Flow supplied by the resonator circulates the seawater of harbor and helps to improve water quality. Within the framework of linear potential theory, matched asymptotic expansion method is employed to analyze the wave responses in a resonator. The semi-circular shape of the resonator has been chosen as an analytic model for mathematical simplicity. The wave responses of both single and arrays of Helmholtz resonator are investi¬gated. To validate an analytic solution, model test is conducted at 2-dimensional wave tanle Wave hcights in the resonator and velocity at the channel are measured for the state of valve-on and valve-off.

  • PDF

Fishing Mechanism of Pots and their Modification 2. Behavior of Crab, Charybdis japonica, to Net Pots (통발어구의 어획기구 및 개량에 관한 연구 2. 그물통발류에 대한 민꽃게의 행동)

  • KIM Dae-An;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.348-354
    • /
    • 1987
  • The behavior of crab, Charybdis japonica h. Milne EDWARDS, to the net pots with baits was investigated alternately in the experimental tanks. One of the pots being dropped on the tank bottom, the crabs touched it to obtain the bait probably reacted by their senses of smell and sight, and increased gradually in the number of touch to show a maximum within 30 min. The crabs, if touched circular pots, were guided more easily to the pot entrances than the case of touching square ones, but the guidance from the vicinity of the entrances into the pots was easier in the square. When the crabs entered the pots, they always showed a sharp precaution. However, most of enterings were made mainly within 30 minutes and easier in pots with lower entrances. If 30 min. elapsed, the entering was little made by the decrease in the number of touch and the getting-out was remarkable, especially in pots with low entrances. But, in all the pots the getting-out was hampered by the drawing of the entrance tips into the pots. In case in which flappers were attached to the entrance tips, the entering was very hampered, hut the getting-out was not shown.

  • PDF

The Effect of Aspect Ratio on the Aerodynamic Characteristics of an Insect-based Flapping Wing (곤충 모방형 플래핑 날개의 공력특성에 관한 가로세로비 효과)

  • Han, Jong-Seob;Chang, Jo-Won;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.662-669
    • /
    • 2012
  • The effect of aspect ratio (AR) on the aerodynamic characteristics of a flapping wing was examined to analyze the design parameters of an insect-based MAV. The experimental model constructed with 4-bar linkages was operated in a water tank with the condition of a low Reynolds number. A water-proof micro-force load cell was fabricated and installed at the root of the wing which is made of a plexiglas. The wing shapes were based on the planform of a fruit fly wing. The ARs selected were 1.87, 3.74 and 7.48 and the Reynolds number was fixed at $10^4$. For AR=1.87 and 3.74, distinct lift peaks which indicate unsteady effects such as 'wake-capture' were observed at the moment of the start of the wing-stroke. However, for AR=7.48, no unsteady effects were observed. These phenomena were also observed in the delayed rotation case. The results indicate that a larger AR provides better aerodynamic performance for the insect-based flapping wing which can be applied in MAV designs.