• Title/Summary/Keyword: 수정 Can-clay모델

Search Result 8, Processing Time 0.021 seconds

A Constitutive Model Using the Spacing Ratio of Critical State (한계상태 간격비를 이용한 구성모델)

  • Lee, Seung-Rae;O, Se-Bung;Gwan, Gi-Cheol
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-58
    • /
    • 1992
  • An elasto-plastic constitutive model for geological materials, which satisfies the flezibility and stability at the same time, can be used in a number of geotechnical problems. Using the spacing ratio of critical state, a flexible model is proposed based on the stability of modified Camflay model. The spacing ratio of critical state can be simply evaluated, and practically used in describing the undrained shearing behavior of clay. The proposed model has precisely predicted the stress paths and stress -strain relationships, compared with the modified Camflay model, with respect to undrained triaxial test results. Besides, the effects of strain rate, creep, and relaxation can also be considered. Using the quasi-state boundary surface, the constitutive relations are well predicted. Therefore, it is found that the assumption of associative flow rule is well posed for undrained behavior of normally consolidated clay.

  • PDF

A Study on the Applicability of Modified Cam-clay Model in Low Plastic Clays (저소성 점토의 수정 Cam-clay 모델 적용성에 관한 연구)

  • Lee, Song;Kim, Tae-Hwoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.247-256
    • /
    • 2003
  • FEM analyses which are based on modified Cam-clay theory have been generally used in such cases as analyses of stability and displacement fur embankment construction on soft clays. However, the Modified Cam Clay Model can generate some problems in anisotropic stress conditions of field because the critical state theory has been developed through many laboratory tests in isotropic conditions. Thus, the applicability on the prediction of undrained shear strength and pore water pressure which was based on the critical state theory was evaluated by triaxial tests and numerical analyses in isotropic and anisotropic conditions. Used samples often come out in domestic area, together with general low plastic clays which are showing dilatant behavior in shearing process. They were evaluated by laboratory tests and FEM based on MCCM. From the results of test and numerical analysis, the predictions of undrained strength in low plastic clays well coincided with each other in both isotropic and anisotropic conditions. However, the generation of porewater pressure was often overestimated during undrained shearing in anisotropic conditions. The results can generate the errors in the prediction of stress path of field sites during loading such as construction of embankment on soft clays because the field is subjected to anisotropic conditions during loading.

Effect of Loading Rate to Bearing Capacities (지지력에 미치는 재하속도에 관한 해석적 연구)

  • 박중배
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.147-158
    • /
    • 1997
  • In this study, it is examined that partial drain has an effect of bearing capacities and deformations on intermediate soils. To compare the numerical and experimental results, this study uses CRISP90 which is composed of Modify Cam-Clay Model for calculation and Geotechnical Centrifuge in model test. As the results of analysis, we can classify relative loading rate into three ranges which are drain, undrain and partial drain. Besides it is proved that partial drain range is about 103.

  • PDF

A Behavior Ana1ysis of Clayey Foundation Improved with Pack Drain (Pack-Drain으로 개량된 점토지반의 거동해석)

  • 오재화;남기현;이문수;허재은;김영남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.116-127
    • /
    • 1996
  • This paper dealt with FEM analysis of foundation improved with pack drain. The theory on pack drain was scrutinized and observed values in the field were compared with numerical results. Work site of Kwangyang container pier was selected as a ease study in which measurement of settlement and pore water pressure was accurately carried out. Biot's consolidation equation was selected as governing One, coupled with modified Camclay model as constitutive one. Christian and Boehmer's numerical technique was adopted. Behavior of foundation with pack drain is not simple but very complicated. Discontinuity resulted from rigidity difference between adjacent materials, smear effect and complicated boundary conditions should be considered in the behavior analysis of foundation behavior. The results of numerical analysis were influenced by smear zone. In relevant to this effect, finite element analysis was carried out using the reduced horizontal coefficient of permeability in the smear zone; The numerical results were compared with observed values in surface settlement. including pore water pressure. However only lateral di5plaoement by numerical ana1Ysis was shown since its measurement was not performed in the field. The predication of settlement to be developed later can be effectively employed for the obtimization of construction. The predication of residual settlement using the data measured in the field was made by Hoshino, Asaoka and hyperbolic method. Among them, the hyperbolic method proved best one. Settlements accorded well between numsrical and observed values while pore pressure showed a slight difference. Lateral displacement showed largest values at constant distance from ground surface. The validation of foundation analysis improved with pack drain by computer program employed in this study selecting modified Cam-clay model was satisfactorily secured.

  • PDF

A Study on the Consolidation and Creep Behaviors of Soft Foundations Reinforced by Geotextiles (토목기유(土木機維)로 보강(補強)된 연약지반(軟弱地盤)의 압밀(壓密) 및 Creep 거동(擧動)에 관한 연구(研究))

  • Chung, Hyung Sik;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.75-84
    • /
    • 1991
  • When we construct the earth structures such as embankments, on soft ground which are consisted of thick marine silty clay, the foundations deform due to consolidation and creep. For the stabilization of the earth structures constructed on soft foundations, we usually uses the mattress and they play an important role in increasing an ultimate bearing capacity by the dispersion of load of embankment. The purpose of this paper was to predict rationally a long term deformation of earth structures and to contribute to embankment design and maintenance. We determined a rheological model of marine clay from experimental data, and developed a computer program using the chosen model and found out the long term behavior of embankment. The results of this paper are as follows: 1. The developed program can analyze simultaneously consolidation and creep. 2. From the results of creep test, the rheological model of marine silty clay can be represented by the Vyalov model. 3. The displacement of embankment on reinforced foundation were smaller than those of the unreinforced foundation in showing the effects of geotextiles on foundation deformations.

  • PDF

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.

Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models (비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발)

  • Choi, Bu-Sung;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF

The Estimation of GIS-based Monthly Soil Erosion with Rainfall Weighting Value (강우가중치를 이용한 GIS기반 월별 토사유실량 평가)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Chae, Hyo-Sok;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.65-73
    • /
    • 2005
  • Because the geological features of Imha basin are composed of clay and shale layer, much soil particle flows into reservoir in shape of muddy water when it rains a lot. Therefore, turbidity data can be indirect-index to estimate the soil erosion of Imha basin. This study evaluated annual soil erosion using GIS-based soil erosion model and applied rainfall weighting value method by time-series rainfall data to estimate monthly soil erosion. In view of 2003 turbidity data, monthly soil erosion with rainfall weighting value is more efficient than monthly soil erosion with rainfall data.

  • PDF