기관출력과 대기조건 각 변수와의 함수관계에서 이 함수가 서로 독립이고, 기관출력은 이들의 선형결합으로 표시됨을 실험으로 확인하였으며, 대기압력 변화 대신 흡기압력과 배기압력을 각각 변화시켜도 지장이 없음을 알았다. 이상과 같은 것으로부터 실험적 출력수정 방법의 타당성을 확인함과 동시에 통상의 대기상태의 변화에 있어서 수정 정밀도가 극히 높다는 것이 입증 되었 으므로 출력수정에 관한 충분한 자료가 되리라는 것을 믿는 바이다.
콩(품종 : 태광)에 증류수를 가수한 후 $40^{\circ}C$의 오븐에서 함수율 $6.74{\sim}28.87%(db)$ 사이의 구간에서 5수준의 일정한 함수율로 건조하여 탈습 시료를 조제한 다음 온도를 $10^{\circ}C$씩 증가시키며 5수준(5, 15, 21, 35, $45^{\circ}C$)에서 평형상대습도를 측정하고, 농산물의 평형함수율/평형상대습도 예측에 많이 쓰이고 있는 수정 Henderson 모델, 수정 Chung-Pfost 모델, 수정 Halsey 모델, 수정 Oswin 모델, 수정 GAB 모델에 대하여 실험상수를 구하고, 결정계수와 F값 및 평균상대오차율을 기준으로 하여 예측모델로서의 적합성을 검정한 결과는 다음과 같다. 콩은 함수율이 16.70%(db) 이하의 시료에서 온도가 낮을수록 그리고 함수율이 낮을수록 평형상대습도가 낮은 값을 나타냈으며, 함수율 28.87%(db)의 시료에서는 온도가 높아짐에 따라 평형상대습도 값이 낮아지는 현상을 보였다. 콩의 흡습 평형함수율 및 평형상대습도의 예측에는 본 실험에서 선정 분석한5개의 모델 모두사용 가능하나, 수정 GAB 모델이 평형함수율 예측과 평형상대습도 예측에 가장 적합하였다.
본 인구는 유역 물관리에 내한 기초연구로서 유전자 알고리즘(Genetic algorithm)을 사용하여 유역내 장기유출 및 단기유출모형의 매개변수를 최적화하므로 유역의 이${\cdot}$치수관리를 위한 과학적인 유출량산정에 목적이 있다. 장기유출모형은 수정 TANK모형, 단기유출모형은 저류함수모형을 선정하여 최적화를 실시하였다. 또한, 장기유출모형의 홍수기에 대한 부정확성을 보정하기 위해 평수기와 홍수기로 매개변수의 최적화를 실시하므로 수정 TANK모형의 단점을 보완하였다. 수정 TANK모형과 저류함수모형의 적용결과 각각 장${\cdot}$단기 유출량에서 실측값과 비교하여 유의성을 나타냈으며, 홍수시 수정 TANK모형과 실측유출량의 비교결과 최적화 전의 모의 보다 높은 상관성을 나타내므로 본 인구의 수정 TANK모형을 사용하여 유역의 효율적인 장기물수지분석이 가능하리라 판단된다.
본 논문에서는 확률적 불확실성을 포함한 손상 장에서 강성저감 효과를 추정하는 방법을 제안하였다. 실제 교량 구조물에 분포된 손상 장은 매우 불확실하며 손상의 위치와 형상 또한 정확히 알 수 없는 경우가 많다. 그러나 대부분의 손상 추정 문제는 균열이나 손상의 위치와 형상을 기지의 주어진 정보로 가정하고 손상을 추정한다. 제안 기법에서는 이러한 손상의 위치와 형태가 본질적으로 불확실하다는 가정 하에 이 불확실성을 수정 가우스 강성 저감 분포 함수를 도입하여 기술한다. 교량에 국부적으로 발생된 손상은 교량의 요소강성의 저감 분포로 변환되어 손상이 발생한 전체 시스템의 강성을 표현하고 이를 통해 손상이 발생한 시스템의 전체 응답을 해석할 수 있게 된다. 수정 가우스 강성 저감 분포 함수는 손상 분포의 개략적 중심을 표현하는 평균 변수와 강성 저감의 비국소적 분포 특성을 묘사하는 표준편차 변수, 손상 중심의 손상 정도를 표현하는 강성저감 변수로 구성된다. 본 논문에서는 손상 장에서 손상의 위치나 형태에 대한 확률적 불확실성을 기술하는 수정 가우스 강성 저감 분포 함수를 포함한 유한요소모델을 정식화하여 제시한다. 또한 단일 또는 복합 균열로 인해 교량 구조물에 국부적인 손상이 야기된 경우에 대한 수치 예제를 통하여 균열 등에 대한 정보가 불확실하더라도 수정 가우스 강성 저감 분포 함수를 통해 강성 저감 효과가 분석될 수 있음을 확인하였다.
본 연구에서는 전문가와 운전자의 제어 지식을 더 정확하게 표현하여 퍼지 논리 제어기의 성능을 향상시킬 수 있는 소속함수 수정 알고리즘을 제안한다. 제안된 알고리즘은 제어지식을 더 정확히 표현할 수 있도록 직관적인 지식과 경험으로부터 유추된 대략적인 제어지식을 평가기준으로 하고 입출력 데이터 클러스터링에 의해 소속함수의 형태와 위치를 수정한다. 제안된 방법을 수위 조절 모델과 교통신호 제어 모델에 적용한 실험을 통해서, 제안된 알고리즘이 기존 제어기의 성능을 향상시킬 수 있고, 퍼지 제어기에서 언어적 변수에 대한 구간 설정의 어려움을 해결할 수 있음을 알 수 있었다.
Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.111-120
/
2016
대부분의 불연속 회귀함수의 커널추정량은 알고 있거나 추정된 불연속점을 기준으로 자료를 분리하여 각각을 독립적으로 회귀함수를 적합하고 있다. 회귀모형에서 분산함수가 불연속점을 가지고 있을 때에도 잔차제곱들을 이용하여 위와 같은 불연속 회귀함수의 커널추정법을 활용하고 있다. Kang 등 (2000)은 $M{\ddot{u}}ller$ (1992)의 불연속점과 점프크기 커널추정량을 이용하여 반응변수의 표본을 연속인 회귀함수로부터 표본인 것처럼 수정하여 불연속 회귀함수를 추정하였다. 본 연구에서는 불연속 분산함수를 추정하기 위하여 Kang 등 (2000)의 방법을 이용한다. Kang과 Huh (2006)의 분산함수의 불연속점과 점프크기 추정량으로 잔차제곱들을 수정하고, 수정된 잔차제곱들을 이용하여 불연속 분산함수 커널추정량을 제안할 것이다. 제안된 추정량의 적분제곱오차의 수렴속도를 보여주고 모의실험을 통하여 기존의 추정량과 제안된 추정량을 비교하고자 한다.
본 연구에서는 개단면 리브를 갖는 보강판을 직교이방성 판으로 해석하는 경우 발생하는 정확도 문제를 개선하기 위하여 보강판의 직교이방성 휨 강성에 대한 강성 수정 계수를 제안하였다. 매개변수로는 강성비와 변장비를 선택하고, 변장비와 지지조건을 달리하며 여러 가지 평강 리브와 L형 리브를 갖는 보강판의 강성 수정 계수에 대한 매개변수 연구를 수행하였다. 보강판을 등방성 판요소와 직교이방성 판요소로 모델링하여 해석한 결과, 강성 수정 계수는 변장비 1 미만의 경우 변장비와 상관없이 리브 간격 별로 강성비에 대한 하나의 함수로 표현 가능하고, 변장비 1 이상인 경우 리브 간격 및 변장비에 따른 처짐 비율 차이가 크지 않아 하나의 통합된 함수로 대표할 수 있음을 알 수 있었다. 또한, 강성 수정 계수에 대한 지지조건의 영향은 크지 않으며, 리브 형태별로 다른 강성 수정 계수 함수가 필요함을 알 수 있었다. 강성 수정 계수 함수를 예제에 적용한 결과, 해의 정확도가 크게 향상되어, 개단면 리브를 갖는 보강판을 직교이방성 판으로 해석하는 경우 본 연구에서 제안한 강성 수정 계수 함수를 적용하면, 간편하게 좀 더 정확한 결과를 얻을 수 있을 것으로 판단된다.
분산함수가 불연속점을 가지는 경우, 대부분의 비모수적 함수 추정 연구에서 분산함수가 음수 값을 갖지 않기에 잔차제곱을 이용한 Nadaraya-Watson 추정량인 국소상수항추정량을 이용하였다. 한편, Huh (2014, 2016a)는 Chen 등 (2009)과 Yu와 Jones (2004)의 연구를 바탕으로 불연속 분산함수를 로그 변환한 로그분산함수를 추정 대상으로 삼아 잔차제곱이나 로그잔차제곱으로 경계점 문제를 가지지 않는 국소선형추정량을 이용하여 비모수적으로 추정하였다. Huh (2016b)는 불연속점에서 점프크기추정량을 활용하여 잔차제곱을 분산함수가 연속인 회귀모형에서 얻어진 잔차제곱인 것처럼 수정한 후 이들을 이용하여 불연속 분산함수의 추정을 연구하였다. 본 연구에서는 불연속 로그분산함수의 점프크기추정량을 이용하여 로그잔차제곱을 수정하고 불연속 로그분산함수를 국소선형추정량을 이용하여 추정하고자 한다. 제안된 추정량의 우수성을 모의실험을 통하여 Chen 등 (2009)의 로그분산함수 추정량을 이용한 Huh (2014)의 불연속 로그분산함수 추정량과 비교하고 실제자료에 적용하고자 한다.
Fourier 면환을 이용하여 불균일 굴절률 박막의 rugate 필터를 설계하였으며 rugate 필터의 반사율, 대역폭, 광학 두께, Q 함수 등을 변화시키며 Fourier 변환의 여러 가지 특성을 조사하였다. 주어진 단선 및 이중 rugate 필터의 과녁 스펙트럼에 불균일 굴절률 박막의 스펙트럼을 맞추기 위하여 merit 함수를 사용하였으며 merit 값이 최소가 되도록 Q 함수를 반복계산하여 수정하였다. Sossi, Bovard, Fabricius가 각각 유도한 세 종류의 Q함수를 반복계산 횟수, merit 함수의 값, 최적 광학두께 등의 관점에서 비교하였다. 반사율이 높은 rugate 필터 설계에는 반복계산 수정 후 반사율이 과녁스펙트럼에 가까운 Bovard와 Fabricius의 Q함수가 적당하며, 광학 두께는 최소 광학두께만 넘으면 반복계산 수정과정을 이용하여 과녁반사율을 맞출 수 있으므로 반사대역폭이 허용하는 광학두께로 결정하면 될 것이다.
최근 Yang과 Tseng이 제안한 직교 신경망(ONN)은 직교 함수를 이용하여 신경망을 구성한 것으로서, 다층 신경망이 가지는 층의 구조에 대한 어려움이 없이 전체 구조를 결정할 수 있다는 장점을 가지고 있다. 또한 요구되는 정확성을 기준으로 직교 함수의 급수를 증가시키므로써 학습하는 동안에 전제 구조를 변형하는 것이 가능하고 가중치의 직? 함수의급수를 증가시키므로써 학습하는 동안에 전체 구조를 변형하는 것이 가능하고 가중치의 학습 알고리듬이 오차 역전파법 학습 알고리듬에 비해 간단하며 수렴 속도가 빠르다는 장점도 있다. 그러나 이러한 직교 신경망은 구조의 골격이 디ㅗ는 직교 함수를 변형할 수 없는 구조를 가진다는 문제점이 있다. 본 논문에서는 입력 변환을 이용하여 직교함수를 학습할 수 있는 구조를 가지는 수정된 직교 신경망(MONN)을 제안한다. 제안한 수정된 지? 신경망을 이용하여 비선형 시스템을 식별하기 위해 식별기 구조를 설정하고 목적을 달성하기 위한 수정된 직교 신경망의 학습 알고리듬을 유도한다.사례연구른 통하여 본 논문에서 제안한 수정된 직교 신경망의 비선형 시스템 모형화 능력, 입력 변환의 유용성을 다충 신경망, 직교 신경망과 비교하여 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.