• Title/Summary/Keyword: 수위저감효과

Search Result 165, Processing Time 0.022 seconds

A Study on the Effect to Reduce the Greenhouse Gas with a Pump Scheduling System in Water Supply Plant : Energy Efficiency Improvement CDM Project in Paldang Pumping Station(III) (펌프 스케쥴링 시스템을 적용한 수도사업장의 온실가스 저감효과 분석 : 팔당3 취수장 에너지효율향상 CDM 사업을 중심으로)

  • Kim, Min Su;Lee, Hyung Muk;Park, Min Su;Gwon, Gi Beom
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • The purpose of this study is to analyze the green-house gas emission reduction of the pump scheduling system applied to the water-supply facilities in all objectivity with AMS-II.C/Version 13 in CDM methodology. To calculate the baseline and project emission in Paldang Pumping Station (III) the data about water flow, water level, electricity consumption, etc. before and after the implementation of project was used. This study considers internal facility (mostly for lighting) electricity consumption and grid loss in order to get more accurate emission reductions. The methodology used in this study will be able to apply to different energy improvement techniques to calculate emission reductions in water supply facilities.

Numerical Analysis for Bed Changes in the Upstream Channel due to the Installation of Sediment Release Openings in the Flood Control Dam (홍수조절댐에서의 배사관 설치에 따른 상류 하천의 하상변동에 관한 수치모의 연구)

  • Ji, Un;Son, Kwang-Ik;Kim, Mun-Mo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • Sediment release openings or pipes are installed in the flood control dam constructed to reduce flood damages, which are to allow water and sediments pass through the dam and to prevent flow blockage and sedimentation in the upstream area of the dam. The Hantan River Flood Control Dam (HRFCD) has been projected for flood damage reduction and sediment release openings and ecological passages are considered for the dam design. In this study, sediment deposition due to the construction of HRFCD was analyzed using the HEC-6 model and compared with the state before the dam construction with respect to the conditions of the annual mean daily discharge and annual discharge hydrograph. According to the numerical results, although downstream water levels were changed by the dam structure, the effects of bed changes were not propagated from the dam over 2 km upstream. Also, 2D numerical models of RMA2 and SED2D were used to predict bed changes in the upstream area with and without sediment release openings. Consequently, it is presented that sediment release openings decreased maximum deposition height in the upstream channel of the dam.

Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section (자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석)

  • Ryu, Jiwon;Ji, Un;Kim, Sanghyeok;Jang, Eun-kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.735-747
    • /
    • 2023
  • In recent times, the sharp increase in extreme flood damages due to climate change has posed a challenge to effectively address flood-related issues solely relying on conventional flood management infrastructure. In response to this problem, this study aims to consider the effectiveness of nature-based flood management approaches, specifically levee retreat and relocation. To achieve this, we utilized a 1D numerical model, HEC-RAS, to analyze the flood reduction effects concerning floodwater levels, flow velocities, and time-dependent responses to a 100-year frequency flood event. The analysis results revealed that the effect of creating a flood buffer zone of the nature-based solution extends from upstream to downstream, reducing flood water levels by up to 30 cm. The selection of the flow roughness coefficient in consideration of the nature-based flood buffer space creation characteristics should be based on precise criteria and scientific evidence because it is sensitive to the flood control effect analysis results. Notably, floodwater levels increased in some expanded floodplain sections, and the reduction in flow velocities varied depending on the ratio of the expanded cross-sectional area. In conclusion, levee retreat and floodplain expansion are viable nature-based alternatives for effective flood management. However, a comprehensive design approach is essential considering flood control effects, flow velocity reduction, and the timing of peak water levels. This study offers insights into addressing the challenges of climate-induced extreme flooding and advancing flood management strategies.

Assessing removal effects on particulate matters using artificial wetland modules (인공 습지 모형을 활용한 습지의 미세먼지 저감 효과)

  • Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2020
  • To assess the wetland systems' capability to reduce fine dust, we used an artificial wetland module of small-sized greenhouse (70cm W × 70cm L × 60cm H) which creates a closed system. Experiment was performed twice using four species in each experiment. Non-plantation, one species, or two species condition was created in each mesocosm. We measured air quality, primarily PM2.5 and PM10 at the initial open mesocosms and 1hr later since mesocosms were closed. The dry weight of vegetation was measured at the 2nd experiment. The decreased amount of PM2.5 and PM10 was 13.7±1.3 and 13.2±1.3 ㎍·m-3hr-1 in wetland condition and 15.0±1.4 and 13.8±1.5 ㎍·m-3hr-1 in dryland condition, respectively. In 2nd experiment, the decreased amount of PM 2.5 and PM 10 in wetland condition was 13.7±1.3 and 9.2±1.5 ㎍·m-3hr-1, 15.0±1.4 and 8.8±1.4 ㎍·m-3hr-1 in dryland condition, respectively. Wetland showed higher removal effect due to its high productivity leading to more effective absorption of particulate matter. Furthermore, the aquatic characteristics of wetland system and high humidity helped purifying the air quality. This can be seen as another value of wetlands, which can be presented as one of the solutions to the problem of fine dust.

Analysis of Groundwater Level Reduction Effects to Burial Angle of Slope Reinforcement Materials (비탈면 보강재의 매설각에 따른 지하수위 저감효과 분석)

  • Hyeonjun Yoon;Sungyeol Lee;Wonjin Baek;Jaemo Kang;Jinyoung Kim;Hwabin, Ko
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.8
    • /
    • pp.5-11
    • /
    • 2023
  • Due to frequent occurrences of concentrated heavy rainfall caused by abnormal climate conditions in recent years, collapses of steep slopes have been occurring frequently due to surface erosion and increased pore water pressure. Various methods are being applied to prevent slope collapses, such as increasing the resistance to movement and reducing pore water pressure. Research on these methods has been consistently conducted as they provide an efficient response to slope collapses by satisfying both the conditions of resistance to movement and pore water pressure simultaneously. Therefore, in this study, we propose an upward slope reinforcement method by burying drainage materials with an upward slope inclination, instead of the conventional horizontal application. This approach aims to satisfy both slope reinforcement and drainage functions effectively, offering a comprehensive solution for slope stabilization. Furthermore, to determine the optimal burial angle that exhibits the most effective reinforcement and drainage effects of the proposed method, we investigated the reinforcement and drainage effects under conditions where the horizontal drainage materials were set at angles ranging from 0° to 60° in increments of 10° on a representative cross-section. Additionally, indoor model experiments were conducted under the conditions of 40°, which showed the most outstanding drainage effect, and 20°, which exhibited the highest safety factor, to validate the numerical analysis results. The results showed that the burial angle of 40° exhibits a relatively higher drainage effect as with the numerical analysis results, while the angle of 20° results in inadequate drainage and observed slope collapse.

An Experimental Study on Behavior Characteristics of Geosynthetics Reinforced Retaining Earth Wall (보강압성토 옹벽의 거동 특성에 관한 실험적 연구)

  • Noh, Taekil;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.29-37
    • /
    • 2012
  • This study is to find out the characteristics of the behavior of Geosyntehtic Reinforced Retaining Earth Wall(GRREW) through the laboratory experiment with the reduced-scale model, and to verify the effect of reinforcement by materials of GRREW. The loading tests after combining nonwoven geosynthetic, re-bar mesh nets and drainage blocks respectively among the components of the GRREW were performed in three cases of their slopes. In the cases of the behavior analysis including all of the components of the GRREW, the maximum horizontal displacement was generated 8.4mm at the location of 0.57H in the slope of 1:0.3; 3.8mm at the location of 0.57H in the slope of 1:0.6; 3.6mm at the location of 0.86H in the slope of 1:1.0. On average, the horizontal displacements of the GRREW were reduced by 83.8% against those of the original slopes. Lastly, seepage analysis and slope stability analysis were performed by modelling section of field, to confirm the effect of installation of drainage block in GRREW. We can confirm to compare increasing the slope safe factor and decreasing ground water in accordance with drainage blocks.

Evaluation of Eutrophication and Control Alternatives in Sejong Weir using EFDC Model (EFDC 모델에 의한 세종보의 부영양화 및 제어대책 평가)

  • Yun, Yeojeong;Jang, Eunji;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.548-561
    • /
    • 2018
  • The objectives of this study were to construct a three-dimensional (3D) hydrodynamic and water quality model (EFDC) for the river reach between the Daecheong dam and the Sejong weir, which are directly affected by Gap and Miho streams located in the middle of the Geum River, and to evaluate the trophic status and water quality improvement effect according to the flow control and pollutant load reduction scenarios. The EFDC model was calibrated with the field data including waterlevel, temperature and water quality collected from September, 2012 to April, 2013. The model showed a good agreement with the field data and adequately replicated the spatial and temporal variations of water surface elevation, temperature and water quality. Especially, it was confirmed that spatial distributions of nutrients and algae biomass have wide variation of transverse direction. Also, from the analysis of algal growth limiting factor, it was found that phosphorous loadings from Gap and Miho streams to Sejong weir induce eutrophication and algal bloom. The scenario of pollutant load reduction from Gap and Miho streams showed a significant effect on the improvement of water quality; 4.7~18.2% for Chl-a, 5.4~21.9% for TP at Cheongwon-1 site, and 4.2~ 17.3% for Chl-a and 4.7~19.4% for TP at Yeongi site. In addition, the eutrophication index value, identifying the tropic status of the river, was improved. Meanwhile, flow control of Daecheong Dam and Sejong weir showed little effect on the improvement of water quality; 1.5~2.4% for Chl-a, 2.5~ 3.8% for TP at Cheongwon-1 site, and 1.2~2.1% for Chl-a and 0.9~1.5% for TP at Yeongi site. Therefore, improvement of the water quality in Gap and Miho streams is essential and a prerequirement to meet the target water quality level of the study area.

Analysis of Intensity-Duration-Quantity (IDQ) Curve for Designing Flood Retention Basin (홍수저류지 설계를 위한 강우강도-지속시간-홍수량(IDQ) 곡선 해석)

  • Kim, Jin Gyeom;Kang, Boosik;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.83-93
    • /
    • 2014
  • This research was carried out for suggesting design criteria and procedure for maximizing flood control capacity by building flood control facilities like flood retention basin built in connection with existing facilities in order to cope with increased uncertainty due to factors such as urbanization and climate change. We suggested the procedure for the analysis under the various scenarios applicable for the cases of determining retention basin capacity as provision for the flood water level increase in main river channel or estimating flood water level reduction effect when retention basin capacity is given. Procedure for estimating design flood hydrograph at any duration using Intensity-Duration-Quantity (IDQ) originated from the existing IDF, and its application example were provided. Based on rainfall estimated by the IDQ analysis, it is possible to calculate an equivalent peak hydrographs under various scenarios, e.g. lower frequency hydrograph under same rainfall duration with water level higher than existing hydrograph, hydrograph with same peak and higher volume due to increased rainfall duration, hydrograph with higher peak and volume than existing hydrograph, etc.

Stratification Effects in a Reservoir on Turbidity Distribution (저수지의 성층현상이 탁도분포에 미치는 영향)

  • Yi Yong-Kon;Kim Woo Gu;Kim Young Do;Kim Dae Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.459-463
    • /
    • 2005
  • 몬순지역에 속한 우리나라의 대부분 저수지에서는 여름철 집중호우시 탁수가 유입되므로, 저수지 수질관리를 위해 고탁수층의 진행경로, 시공간적 분포, 그리고 방류량조절 등에 의한 탁수저감효과를 예측할 필요성이 있다. 저수지의 성층현상이 임하호의 탁도분포에 미치는 영향을 검토하기 위하여 월별 수온분포가 검토되었고 또한 수리 및 수질모형 CE-QUAL-W2를 이용하여 2차원 수치모의가 수행되었다. 임하호의 6월 수온분포는 표층은 $24^{\circ}C$이고 심층은 $6^{\circ}C$이고 중층은 비교적 선형으로 변화한다. 8월달 수온 분포는 표층의 수온은 $30^{\circ}C$정도이고 심층은 심층은 $6^{\circ}C$이고중층은 $22^{\circ}C$에서 $18^{\circ}C$이고 2개의 수온약층이 존재한다. 6월과 8월의 중층수온분포를 비교해보면 6월은 상대적으로 수온변화가 크고 8월은 수온변화가 작으므로 중층에서의 이송확산이 8월에 보다 활발할 것으로 판단된다. 임하호 성층현상이 탁도분포에 미치는 영향을 파악하기 위하여 6월과 8월의 수온분포의 경우에 대하여 임하호 유역에 80 mm와 120 mm의 총강우량이 발생한 경우에 대하여 수치모의를 수행하였다. 초기 저수위는 El. 148 m와 El. 152 m의 조건을 적용하였다. 수치모의결과는 2002년 태풍루사의 경우에 대하여 검증하였다. 수치모의결과는 다음과 같다. 탁수층 선단이 댐체에 도달하는 시간은 초기 저수위가 높고 중층의 수온분포가 상대적으로 균일한 8월이 긴 것으로 나타났다. 이러한 현상은 유입수가 저수지로 유입되면서 초기수위가 높은 경우에 운동량이 상대적으로 많이 소멸되기 때문으로 판단된다. 또한 탁수층의 두께도 8월 성층의 경우가 상대적으로 큰 것으로 나타났다. 이는 중층의 8월 수온분포 또는 밀도분포가 상대적으로 균일하기 때문에 연직방향 이송$\cdot$확산이 많이 이루어졌기 때문으로 판단된다.

  • PDF

An Analysis on the Changes of flow Duration Characteristics due to Dam Construction (댐 건설에 따른 하류 유황의 변화 분석)

  • Kim, Tae-Gyun;Yoon, Yong-Nam;Ahn, Hae-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.807-816
    • /
    • 2002
  • The purpose of the present study was to evaluate the changes of flow duration characteristics of a large river basin due to construction of a dam. The changes of water surface are quantified from remote sensing film taken before and after dam construction. Gongiu gauging station was selected to analyze the changes of flow duration, and annual exceedance series of Gongju and Kyuam gauging station were selected to estimate the changes of flood quantile before and after dam construction. From the analysing results, it was found that the construction of dam contributes to make new duration stable and to decrease flood flow. In conclusion, it was confirmed that the construction of the dam is useful for water supply and flood prevention.