• Title/Summary/Keyword: 수용성 단백질발현

Search Result 108, Processing Time 0.028 seconds

Soluble Expression of Human Angiostatin and Endostatin by Maltose Binding Protein (MBP) Fusion in E. coli (Maltose Binding Protein 융합단백질에 의한 인간유래의 앤지오스타틴과 앤도스타틴의 대장균에서 수용성 단백질발현)

  • Paek, Seon-Yeol;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.59-63
    • /
    • 2008
  • Rapid production of therapeutic proteins such as angiostatin and endostatin angiogenic inhibititors has been highly demanded for cancer treatment. In this regard, recombinant human angiostatin and endostatin were successfully expressed as soluble forms by maltose binding protein (MBP)-mediated fusion expression in Escherichia coli. PCR amplified, angiostatin and endostatin genes from human placenta cDNA library were inserted into an expression vector pMAL-c2e to construct prokaryotic expression vectors, pMAL-c2e/AS and pMAL-c2e/ES, respectively. Recombinant angiostatin and endostatin were efficiently expressed in E. coli origami (DE3) after IPTG induction and protein expression were confirmed by SDS-PAGE analyses. The expressed recombinant proteins were purified near homogenity using an amylose affinty column chromatography. In contrast that previous E. coli expressions were all insoluble, our results first time demonstrated that MBP fused human angiostatin and endostatin were soluble in E. coli.

  • PDF

The role of p38 MAP kinase on RANKL regulation in mouse periodontal ligament fibroblasts (마우스 치주인대 섬유모세포에서 RANKL 조절에 대한 p38 MAP kinase의 역할)

  • Kim, Jae-Cheol;Cui, De-Zhe;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.311-323
    • /
    • 2007
  • Receptor activation of nuclear factor ${\kappa}$ B ligand (RANKL)은 파골세포의 분화와 기능에 중요한 역할을 하는 단백질로 이들 물질의 조절에는 p38 MAP kinase가 관여한다. 그러나 치주인대 섬유모세포에서 RANKL 발현 시 p38 MAP kinase의 역할은 잘 알려져 있지 않다. 이에 이번 연구는 마우스 치주인대 섬유모세포의 $IL-1{\beta}-induced$ RANKL 발현과정에서 p38의 역할을 규명하고자 하여 다음과 같은 결과를 얻었다. 마우스 치주인대 섬유모세포에 $IL-1{\beta}$ (1ng/ml)의 자극은 수용성 RANKL의 합성을 증가시켰다. 수용성 RANKL의 합성은 p38 MAP kinase 억제제인 SB203580에 의해 농도 의존적으로 억제되었으나 다른 MAP kinase 억제제인 SP600125, JNK 억제제와 PD98059, ERK 억제제에 의해서는 수용성 RANKL의 합성이 조절되지 않았다. NF-kB 억제제에 의해서도 수용성 RANKL의 합성이 억제되지 않았다. RANKL 유전자의 발현은 $IL-1{\beta}$로 자극 시에는 대조군에 비해 약 5배의 발현 증가를 보였으나 SB203580으로 전처치 시 $IL-1{\beta}$ (1ng/ml)로 자극시보다 약 1.5배의 감소를 보였다. 그러나 SP600125, PD98059, 및 NF-kB 억제제로 전처치한 경우에는 $IL-1{\beta}$로 자극한 경우와 비슷한 수준을 보였다. $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기가 90분 이었으나 SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기는 60분으로 감소하였다. Cycloheximide 전처리 시 SB203580에 의한 RANKL 유전자 발현 억제가 관찰되지 않았다. 단백질 분석결과 p38 MAP kinase의 인산화 활성은 30분까지 증가하였으나 그 이후 감소하여 2시간째에는 그 발현이 미약하였다. SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 p38 MAP kinase의 인산화 활성이 감소하였다. 이상의 결과는 p38 MAP kinase가 RANKL 유전자 조절에 중요한 역할을 담당하고 있음을 시사한다.

Solubilities and Activities of Chloramphenicol Acetyltransferase and $\beta$-Lactamase Overproduced by the T7 Expression System in Escherichia coli (대장균에서의 T7 발현체계에 의하여 과잉생산된 클로람페니콜 아세틸전이효소와 베타-락타메이즈의 수용성과 활성)

  • Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.274-278
    • /
    • 1993
  • Overproduced proteins in many cases result in forming insoluble inclusion bodies, and their formation might be due to high concentration of protein. To investigate how proteins become insoluble, chloramphenicol acetyltransferase (CAT) and .betha.-lactamase were overproduced, and their solubilities and activities were determined. CAT was accumulated from 9 to 45% of total cellular protein in a fully soluble form without inclusion body formation. CAT specific activity was shown to be proportional to the amount of the protein produced. Moderately produced .betha.-lactamase by the phase T7 expression system at 30.deg.C comprised only mature forms in a soluble form. However, overproduced .betha.-lactamase at 37.deg.C became insoluble. Most precursor forms of .betha.-lactamase in the cytoplasm were insoluble, whereas majority of the mature forms in the periplasm space were soluble. Also, chaperone GroE proteins which assist proper protein folding and translocation did not increase .betha.-lactamase solubility significantly under the experimental condition. It seems that the formation of inclusion bodies in the cell is related to the nature of protein itself rather than just to high concentration of protein.

  • PDF

Soluble Expression of the Fucosyltransferase Gene from Helicobacter pylori in Escherichia coli by Co-expression of Molecular Chaperones (샤페론단백질동시발현기술을이용하여 Helicobacter pylori 유래의 fucosyltransferase의수용성생산)

  • Lee, A Reum;Li, Ling;Shin, So-Yeon;Moon, Jin Seok;Eom, Hyun-Ju;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.212-218
    • /
    • 2015
  • Fucosyltransferases (FucTs) catalyze fucosyl transfer from guanosine-diphosphate fucose (GDP-β-L-fucose) to acceptor molecules to form fucosyloligosaccharides with α-glycosidic linkages. However, when FucT genes have been expressed in Escherichia coli, most cases have resulted in the production of inclusion bodies. In this study, to overcome this drawback, molecular chaperones were co-expressed with α1,2-fucosyltransferase (FucT2) in E. coli. For this, the pACYC184 vector, having genes for chaperones such as GroEL, GroES, DnaK, DnaJ, and GrpE, were transformed into E. coli BL21 (DE3) star harboring pHFucT2, including the FucT2 gene from Helicobacter pylori 26695. The results from SDS-PAGE showed that 5 chaperones were successfully expressed and the soluble fraction of FucT2 was also increased. HPLC analysis revealed that the coexpression of chaperone proteins resulted in a 5-fold increase in the total activity of fucosyltransferase in E. coli. In conclusion, the FucT2 expression system developed in this study can be used as a useful tool for the synthesis of fucosyloligosaccharides.

Cloning of cDNA Encoding Putative Cellular Receptor Interacting with E2 protein of Hepatitis C Virus (C형 간염바이러스 E2 단백질에 결합하는 추정 세포수용체 cDNA의 클로닝)

  • 이성락;백재은;석대현;박세광;최인학
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.541-550
    • /
    • 2003
  • E2 glycoprotein of hepatitis C virus (HCV) comprises a surface of viral particle together with E1 glycoprotein, and is thought to be involved in the attachment of HCV viral particle to receptor (s) on the permissible cells including hepatocytes, B cells, T cells, and monocytes. We constructed a phage library expressing cellular proteins of hepatocytes on the phage surface, which turned out to be 8.8${\times}$$10^5$ cfu of diversity and carried inserts in 95% of library. We screened both cDNA phage library and 12-mer peptide library to identify the cellular proteins binding to E2 protein. Some intracellular proteins including tensin and membrane band 4.1 which are involved in signal transduction of survival and cytoskeleton organization, were selected from cDNA phage library through several rounds of panning and screening. On the contrary, membrane proteins such as CCR7, CKR-L2, and insulin-like growth factor-1 receptor were identified through screening of peptide library. Phages expressing peptides corresponding to those membrane proteins were bound to E2 protein specifically as determined by neutralization of binding assay. Since it is well known that HCV can infect T cells as well as hepatocytes, we examined to see if E2 protein can bind to CCR7, a member of C-protein coupled receptor family expressed on T cells, using CCR7 transfected tells. Human CCR7 cDNA was cloned into pcDNA3.1(-) vector and transfected into human embryonic kidney cell, 293T, and expressed on the surface of the cell as shown by flow cytometer. Binding assay of E2 protein using CCR7 transfected cells indicated that E2 protein bound to CCR7 by dose-dependent mode, giving rise to the possibility that CCR7 might be a putative cellular receptor for HCV.

Development of Olfactory Biosensor Using Olfactory Receptor Proteins Expressed in E. coli

  • Seong, Jong-Hwan;Go, Hwi-Jin;Park, Tae-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.639-642
    • /
    • 2003
  • Olfactory receptor protein ODR10 was expressed in E.coli as fusion protein with GST and His6 Tag. Crude membrane extract of the expressed protein was coated on the surface of quartz crystal microbalance, and the interaction of the ODR10 with several odorants was examined. Although the expression level was very low, quartz crystal microbalance showed that the expressed protein interacted most strongly with diacetyl (butanedione), which is known to bind to the ODR10 protein selectively. The interaction between ODR10 and diacetyl was $5{\sim}10$ times stronger than the interaction between ODR10 and other odorants. Thus, E. coli cells expressing the olfactory receptor protein could be used as an olfactory biosensor. Also, such system could be used to test which olfactory receptor reacts specifically with which odorant molecules, since there has been no cheap and convenient way to test the interaction of olfactory receptors and odorant molecules yet.

  • PDF

Functional Expression of Soluble Streptavidin in Escherichia coli (수용성 streptavidin의 Escherichia coli 에서 기능적 발현)

  • Han, Seung Hee;Kim, Hyeong Min;Lim, Myeong Woon;Kim, Jin-Kyoo
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.631-637
    • /
    • 2015
  • Streptavidin, a protein produced by Streptomyces avidinii, strongly binds up to four molecules of vitamin H, d-biotin exhibiting the dissociation constant of about 10−15 M. This strong binding affinity has been applied for detection and characterization of numerous biological molecules suggesting expression and purification of functional streptavidin should be very useful for the application of this streptavidin-biotin interaction. To express a soluble streptavidin in Escherichia coli, We synthesized streptavidin genes and cloned into pET-22b plasmid, which uses T7 RNA polymerase/T7 promoter expression systems containing pelB leader for secretion into periplasmic space and six polyhistidine tags at C-terminus for purification of expressed proteins. Although streptavidin is toxic to Escherichia coli due to strong biotin binding property, streptavidin was expressed very sufficiently in a range of 10-20 mg/ml. In SDS-PAGE, the size of purified protein was shown as 17 kDa in denatured condition (boiling) and 68 kDa in native condition (without boiling) suggesting tetramerization of monomeric subunit by non-covalent association. Further analysis by size-exclusion chromatography supported streptavidin’s tetrameric structure as well. In addition, soluble streptavidin detected biotinylated proteins in westernblot indicating its functional activity to biotin. Taken these results together, it concluded that our simple expression system was able to show high yield, homotetrameric formation and biotin binding activity analogous to natural streptavidin.

Functional Expression of an Anti-GFP Camel Heavy Chain Antibody Fused to Streptavidin (Streptavidin이 융합된 GFP항원 특이적인 VHH 항체의 기능적 발현)

  • Han, Seung Hee;Kim, Jin-Kyoo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1416-1423
    • /
    • 2018
  • With strong biotin binding affinity ($K_D=10^{-14}M$), the tetrameric feature of streptavidin could be used to increase the antigen binding activity of a camel heavy chain (VHH) antibody through their fusion, here stained with biotinylated horseradish peroxidase and subsequent immunoassays ELISA and Western blot analysis. For this application, we cloned the streptavidin gene amplified from the Streptomyces avidinii chromosome by PCR, and this was fused to the gene of the 8B9 VHH antibody which is specific to green fluorescent protein (GFP) antigens. To express a soluble fusion protein in Escherichia coli, we used the pUC119 plasmid-based expression system which uses the lacZ promoter for induction by IPTG, the pelB leader sequence at the N-terminus for secretion into the periplasmic space, and six polyhistidine tags at the C-terminus for purification of the expressed proteins using an $Ni^+$-NTA-agarose column. Although streptavidin is toxic to E. coli because of its strong biotin binding property, this soluble fusion protein was expressed successfully. In SDS-PAGE, the size of the purified fusion protein was 122.4 kDa in its native condition and 30.6 kDa once denatured by boiling, suggesting the tetramerization of the monomeric subunit by non-covalent association through the streptavidin moiety fusing to the 8B9 VHH antibody. In addition, this fusion protein showed biotin binding activity similar to streptavidin as well as GFP antigen binding activity through both ELISA and Western blot analysis. In conclusion, the protein resulting from the fusion of an 8B9 VHH antibody with streptavidin was successfully expressed and purified as a soluble tetramer in E. coli; it showed both biotin and GFP antigen binding activity suggesting the possible production of a tetrameric and bifunctional VHH antibody.

Cloning and Expression of Mammaglobin Gene (Mammaglobin 유전자 재조합 및 발현에 관한 연구)

  • 이재학
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • In this study, I attempted to develope the expression and purification system of human mammaglobin proteins in Escherichia coli and to produce anti-human mammaglobin rabbit antibody for the detection of human mammaglobin protein in the peripheral blood of breast cancer patients. Human mammaglobin gene was cloned and sequenced from m-RNAs purified from donated breast cancer tissues using RT-PCR. The cloned gene was inserted into pET30, pET22, and pET32 plasmid. The cloned gene in pET30 yields insoluble proteins which was difficult to purify from the cells extracts. The mammaglobin gene in pET32 was strongly expressed soluble proteins which were isolated using Ni-NTA affinity chromagraphy and DEAE-ion exchange chromatography, followed by enterokinase digestion of the purified proteins. The isolated proteins had enough purity to use as a antigen for the production of anti-mammaglobin antibody in rabbits. The polyclonal antibody produced against the isolated mammaglobin showed a specificity to mammaglobin after Westernblot immuno assay. In conclusion, the isolated mammaglobin protein and the anti-mammaglobin rabbit antibody may be used for diagnosis of breast cancer as well as development of anti-breast cancer drug.

RGS3 Suppresses cAMP Response Element (CRE) Activity Mediated by CB2 Cannabinoid Receptor in HEK293 Cells (캐너비노이드 수용체 CB2의 신호전달작용에 미치는 RGS3의 억제적 효과)

  • Kim, Sung-Dae;Lee, Whi-Min;Endale, Mehari;Cho, Jae-Youl;Park, Hwa-Jin;Oh, Jae-Wook;Rhee, Man-Hee
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1506-1513
    • /
    • 2009
  • RGS proteins have been identified as negative regulators of G protein signalling pathways and attenuate the activity of GPCR receptors. However, information on the regulatory effects of RGS proteins in the activity of cannabinoid receptors is limited. In this study, the role of RGS proteins on the signal transduction of the CB2 cannabinoid receptor was investigated in HEK293 cells co-transfected with CB2-receptors and plasmids encoding RGS2, RGS3, RGS4 and RGS5. Treatment of cells with WIN55, 212-2, a CB2 receptor agonist, inhibited forskolin-induced cAMP response element (CRE) activity in CB2-transfected HEK293 (CB2-HEK293) cells. This inhibitory effect of WIN 55, 212-2 on CRE activity was reversed by co-transfection of CB2-HEK293 cells with RGS3, but not with RGS2, RGS4 and RGS5. However, endogenous RGS3 protein knocked down by a small interfering siRNA targeting RGS3 gene enhanced inhibition of forskolin induced CRE activity via agonist induced CB2 receptor signal transduction. These results indicate the functional role of endogenous RGS protein in cannabinoid signaling pathways and define receptor-selective roles of endogenous RGS3 in modulating CRE transcriptional responses to agonist induced CB2 receptor activity.