Browse > Article
http://dx.doi.org/10.4014/mbl.1507.07004

Soluble Expression of the Fucosyltransferase Gene from Helicobacter pylori in Escherichia coli by Co-expression of Molecular Chaperones  

Lee, A Reum (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Li, Ling (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Shin, So-Yeon (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Moon, Jin Seok (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Eom, Hyun-Ju (Chungcheongbuk-do Agricultural Research and Extension Services)
Han, Nam Soo (Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Publication Information
Microbiology and Biotechnology Letters / v.43, no.3, 2015 , pp. 212-218 More about this Journal
Abstract
Fucosyltransferases (FucTs) catalyze fucosyl transfer from guanosine-diphosphate fucose (GDP-β-L-fucose) to acceptor molecules to form fucosyloligosaccharides with α-glycosidic linkages. However, when FucT genes have been expressed in Escherichia coli, most cases have resulted in the production of inclusion bodies. In this study, to overcome this drawback, molecular chaperones were co-expressed with α1,2-fucosyltransferase (FucT2) in E. coli. For this, the pACYC184 vector, having genes for chaperones such as GroEL, GroES, DnaK, DnaJ, and GrpE, were transformed into E. coli BL21 (DE3) star harboring pHFucT2, including the FucT2 gene from Helicobacter pylori 26695. The results from SDS-PAGE showed that 5 chaperones were successfully expressed and the soluble fraction of FucT2 was also increased. HPLC analysis revealed that the coexpression of chaperone proteins resulted in a 5-fold increase in the total activity of fucosyltransferase in E. coli. In conclusion, the FucT2 expression system developed in this study can be used as a useful tool for the synthesis of fucosyloligosaccharides.
Keywords
Fucosyltransferase; human milk oligosaccharides; chaperone; soluble expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nishihara S, Kanemori M, Kitagawa M, Yanagi H, Yura T. 2003. α1, 3-Fucosyltransferase IX (Fut9) determines Lewis X expression in brain. Glycobiology 13: 445−455.   DOI
2 Oriol R, Samuelsson B, Messeter L. 1990. ABO antibodies - Serological behavior and immuno-chemical characterization. Int. J. Immunogenet. 17: 279−299.   DOI
3 Orntof T, Greenwell P, Clausen H, Watkins W. 1991. Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewis (b) blood group antigens in human colon by alpha-2-L-fucosylation. Gut 32: 287−293.   DOI
4 Pang PC, Tissot B, Drobnis EZ, Sutovsky P, Morris HR, Clark GF, et al. 2007. Expression of bisecting type and Lewisx/Lewisy terminated N-glycans on human sperm. J. Biol. Chem. 282: 36593−36602.   DOI
5 Schein CH, Noteborn MH. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nat. Biotechnol. 6: 291−294.   DOI
6 Shaw MK, Ingraham JL. 1967. Synthesis of macromolecules by Escherichia coli near the minimal temperature for growth. J. Bacteriol. 94: 157−164.
7 Sørensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact. 4: 1.   DOI
8 Wang G, Boulton PG, Chan NWC, Palcic MM, Taylor DE. 1999. Novel Helicobacter pylori α1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology. 145: 3245−3253.   DOI
9 Lee WH, Pathanibul P, Quarterman J, Jo JH, Han NS, Miller MJ, et al. 2012. Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microb. Cell Fact. 11: 48.   DOI
10 Lerouge I, Vanderleyden J. 2002. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26: 17−47.   DOI
11 Ma B, Simala-Grant JL, Taylor DE. 2006. Fucosylation in prokaryotes and eukaryotes. Glycobiology 16: 158−184.   DOI
12 Malissard M, Borsig L, Di Marco S, Grütter MG, Kragl U, Wandrey C, et al. 1996. Recombinat soluble β-1,4-galactosyltransferases expressed in Saccharomyces cerevisiae. Eur. J. Biochem. 239: 340−348.   DOI
13 Martínez-Alonso M, García-Fruitós E, Ferrer-Miralles N, Rinas U, Villaverde A. 2010. Side effects of chaperone gene coexpression in recombinant protein production. Microb. Cell Fact. 9: 64−64.   DOI
14 Moran AP. 2008. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr. Res. 343: 1952−1965.   DOI
15 Morais VA, Serpa J, Palma AS, Costa T, Maranga L, Costa J. 2001. Expression and characterization of recombinant human alpha-3/4-fucosyltransferase III from Spodopterafrugiperda (Sf9) and Trichoplusiani (Tn) cells using the baculovirus expression system. Biochem. J. 353: 719−725.   DOI
16 Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T. 1998. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen,Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694−1699.
17 Costa C, Zhao L, Burton WV, Bondioli KR, Williams BL, Hoagland TA, et al. 1999. Expression of the human α1,2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis. FASEB J. 13: 1762−1773.   DOI
18 Baneyx F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411−421.   DOI
19 Becker DJ, Lowe JB. 2003. Fucose: biosynthesis and biological function in mammals. Glycobiology 13: 41−53.   DOI
20 Chen R. 2012. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 30: 1102−1107.   DOI
21 Costa J, Grabenhorst E, Nimtz M, ConradtStable HS. 1997. Expression of the Golgi form and secretory variants of human fucosyltransferase III from BHK-21 cells J. Biol. Chem. 272: 11613−11621.   DOI
22 Cui SS, Lin XZ, Shen JH. 2011. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr. Purif. 77: 166−172.   DOI
23 de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. 2007. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol. 7: 32.   DOI
24 Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571−579.   DOI
25 Kiefhaber T, Rudolph R, Kohler HH, Buchner J. 1991. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Nat. Biotechnol. 9: 825−829.   DOI
26 Appelmelk BJ, Simoons-Smit I, Negrini R, Moran AP, Aspinall GO, Forte JG, et al. 1996. Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun. 64: 2031−2040.
27 Anderson K, Li SC, Li YT. 2000. Diphenylamine-aniline-phosphoric acid reagent, a versatile spray reagent for revealing glycoconjugates on thin-layer chromatography plates. Anal. Biochem. 287: 337−339.   DOI