• Title/Summary/Keyword: 수요예측기법

Search Result 273, Processing Time 0.033 seconds

Study of Travel Demand and Air Route Strategy : Web Crawling-based Analysis Technology (여행 수용 파악 및 항공 노선 전략 연구 : 웹 크롤링 기반 분석 기법)

  • Cho, Chang-Hyeon;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.378-381
    • /
    • 2020
  • 항공/여행 상품은 타 산업보다 불확실성에 취약하며 시간의 절대적인 종속성으로 인해 정확한 수요 파악 및 예측을 하지 못할 경우 가치가 0으로 수렴한다. 이에 본 논문은 웹 크롤링을 기반으로 잠재여행 욕구를 파악하고, 향후 성장할 것으로 예상되는 항공 노선 및 취항지를 예측 및 분석하는 기법을 제안하고자 한다.

Forecasting the Daily Container Volumes Using Data Mining with CART Approach (Datamining 기법을 활용한 단기 항만 물동량 예측)

  • Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.3
    • /
    • pp.1-17
    • /
    • 2021
  • Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.

Application of Artificial Neural network in container traffic forecasting (컨테이너물동량 예측에 있어 인공신경망모형의 활용에 관한 연구)

  • Shin, Chang-Hoon;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.108-109
    • /
    • 2010
  • 본 연구에서는 비선형예측기법으로서 그 우수성을 인정받고 있는 인공신경망모형을 사용하여 컨테이너 물동량 예측을 수행하였다. 그러나 인공신경망모형을 사용해 시계열의 예측결과를 ARIMA모형과 같이 널리 알려진 다른 전통적인 수요예측기법들과 비교 평가한 과거 연구들을 보게 되면 각기 주장하는 바와 그 결론이 상반됨을 알 수 있다. 그래서 인공신경망의 예측성과를 높이기 위한 기존의 선행연구들의 다양한 시도들을 바탕으로 국내 항만의 컨테이너물동량을 예측하고, 그를 통해 여러 모형간의 비교 검증작업을 수행하였다.

  • PDF

Evaporative demand drought index forecasting in Busan-Ulsan-Gyeongnam region using machine learning methods (기계학습기법을 이용한 부산-울산-경남 지역의 증발수요 가뭄지수 예측)

  • Lee, Okjeong;Won, Jeongeun;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.617-628
    • /
    • 2021
  • Drought is a major natural disaster that causes serious social and economic losses. Local drought forecasts can provide important information for drought preparedness. In this study, we propose a new machine learning model that predicts drought by using historical drought indices and meteorological data from 10 sites from 1981 to 2020 in the southeastern part of the Korean Peninsula, Busan-Ulsan-Gyeongnam. Using Bayesian optimization techniques, a hyper-parameter-tuned Random Forest, XGBoost, and Light GBM model were constructed to predict the evaporative demand drought index on a 6-month time scale after 1-month. The model performance was compared by constructing a single site model and a regional model, respectively. In addition, the possibility of improving the model performance was examined by constructing a fine-tuned model using data from a individual site based on the regional model.

Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station (전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처)

  • Joongi Hong;Suntae Kim;Jeongah Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.

A Maximum Power Demand Prediction Method by Average Filter Combination (평균필터 조합을 통한 최대수요전력 예측기법)

  • Yu, Chan-Jik;Kim, Jae-Sung;Roh, Kyung-Woo;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.227-239
    • /
    • 2020
  • This paper introduces a method for predicting the maximum power demand despite communication errors in industrial sites. Due to the recent policy of de-nuclearization in Korea, the price of electricity is inevitable, and the amount of electricity used and maximum load management for the management of power demand are becoming important issues. Accordingly, it is important to predict and manage peak power. However, problems such as loss and modulation of measured power data occur at industrial sites due to noise generated by various facilities and sensors. It is difficult to predict the exact value when measured effective power data are lost. The study presents a model for predicting and correcting anomalies and missing values when measured effective power data are lost. The models used in this study are expected to be useful in predicting peak power demand in the event of communication errors at industrial sites.

Development of International Passenger Travel Demand Models for the ASEAN Region (아세안지역의 국가간 여객통행수요 추정모형 구축에 관한 연구)

  • Mun, Jin-Su;Park, Jun-Hwan;Jung, Ho-Young
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.6
    • /
    • pp.7-15
    • /
    • 2008
  • Due to the limitations in the statistical data, the existing studies adopted rough methodologies with strong assumptions in the estimation of international passenger travel demand forecast in the ASEAN region. This study aims to develop international passenger travel demand models using scientific methodologies. This study proposes a direct demand model using the immigration and emigration data between countries in the region. This is because of the difficulty of estimating trip generation and trip distribution separately due to the data limitation in the region. As there does not exist the mode choice model for the region, this study estimates a mode choice model using the Stated Preference technique. The mode choice model is separated into three categories of models according to the range of distance between the origin and destination of travel; this is to reflect the different behavior in mode choice according to the travel distance. The result of model estimations suggests that the estimated models produce resonable results statistically. It is expected that the proposed models are useful for the future travel demand estimation in the ASEAN region.

A Study on Surface Ships Collision Avoidance Based on Collision Prediction (충돌예측 기반 선박 충돌회피모델에 관한 연구)

  • 김창민;김용기;최중락
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.47-50
    • /
    • 2002
  • 산업이 발달함에 따라 대량의 화물을 빠르게 운반할 수 있는 해상운송수단의 수요가 증가하게 되고 이로 인하여 해상 선박 간 충돌사고가 빈번히 발생하게 되었다 선박 충돌은 주로 조선하는 사람들의 관습, 습관의 차이, 부주의, 판단오류 등의 이유로 발생한다. 연구자들은 선박 충돌을 방지하기 위하여 조선에 관련된 많은 부분을 지능화한 지능형 충돌회피시스템 개발에 노력을 기울이고 있다. 선박을 비롯한 자율운동체의 충돌방지 기법은 비행체, 수중운동체, 자율로봇 등 영역 특성을 달리하는 다양한 분야에서 연구되어오고 있다 기존 연구들의 충돌방지는 주로 장애물의 공간적 특성에 기반하고 있다. 이에 개체의 움직임을 예측하여 시간적 요소를 가미하면 더욱 향상된 충돌방지가 가능하다. 특히, 선박은 느린 운동 특성과 조선법, 규격화된 통신수단의 발달로 인하여 상대편 선박의 이동 예측이 용이하므로 이를 적용하여 보다 향상된 충돌방지가 가능하다. 본 연구에서는 기존의 충돌회피기법의 과정에 예측을 추가한 예측기반 충돌회피모형을 제안하고 선박운항환경을 모의실험에 의하여 해당 모형 적용시 충돌회피 경로 산출의 안전성이 크게 개선됨을 보인다.

  • PDF

Short-term Power Load Forecasting using Time Pattern for u-City Application (u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측)

  • Park, Seong-Seung;Shon, Ho-Sun;Lee, Dong-Gyu;Ji, Eun-Mi;Kim, Hi-Seok;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • Developing u-Public facilities for application u-City is to combine both the state-of-the art of the construction and ubiquitous computing and must be flexibly comprised of the facilities for the basic service of the building such as air conditioning, heating, lighting and electric equipments to materialize a new format of spatial planning and the public facilities inside or outside. Accordingly, in this paper we suggested the time pattern system for predicting the most basic power system loads for the basic service. To application the tim e pattern we applied SOM algorithm and k-means method and then clustered the data each weekday and each time respectively. The performance evaluation results of suggestion system showed that the forecasting system better the ARIMA model than the exponential smoothing method. It has been assumed that the plan for power supply depending on demand and system operation could be performed efficiently by means of using such power load forecasting.

  • PDF