• Title/Summary/Keyword: 수압법

Search Result 201, Processing Time 0.026 seconds

Non-hydrostatic modeling of nonlinear waves in a circular channel (비정수압 모형을 이용한 원형 수로에서 비선형 파랑의 해석)

  • Choi, Doo-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.335-344
    • /
    • 2011
  • A curvilinear non-hydrostatic free surface model is developed to investigate nonlinear wave interactions in a circular channel. The proposed model solves the unsteady Navier-Stokes equations in a three-dimensional domain with a pressure correction method, which is one of fractional step methods. A hybrid staggered-grid layout in the vertical direction is implemented, which renders relatively simple resulting pressure equation as well as free surface closure. Numerical accuracy with respect to wave nonlinearity is tested against the fifth-order Stokes solution in a two-dimensional numerical wave tank. Numerical applications center on the evolution of nonlinear waves including diffraction and reflection affected by the curvature of side wall in a circular channel comparing with linear waves. Except for a highly nonlinear bichrmatic wave, the model's results are in good agreement with superimposed analytical solution that neglects nonlinear effects. Through the numerical simulation of the highly nonlinear bichramatic wave, the model shows its capability to investigate the evolution of nonlinear wave groups in a circular channel.

An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed (진행파동장하 해저지반내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Ryu, Heung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In this paper, the errors found in the existed analytical solutions described the mechanism of residual pore-water pressure accumulation were examined and a new analytical was proposed. The new analytical solution was derived by using a Fourier series expansion and separation of variables was verified by comparison with the existed both analytical and numerical solutions and experimental result. The new analytical solution is very simple that there is no need for numerical integration for deep soil thickness. In addition, the solutions of the residual pore-water pressure for finite, deep, and shallow soil thickness reveled that it is possible to approach from finite to shallow soil thickness, but not possible to deep soil thickness because there was discontinues zone between finite and deep soil thickness.

Numerical Analysis on the Determination of Hydraulic Characteristics of Rubble Mound Breakwater (경사식 방파제의 수리특성 결정을 위한 수치해석)

  • 박현주;전인식;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.19-33
    • /
    • 2002
  • A numerical method to efficiently secure necessary design informations of the hydraulic characteristics of rubble mound breakwater was attempted here. The method combines the exterior wave field with the interior wave field which is formulated incorporating porous media flow inside the breakwaters. An approximate method based on the long wave assumption was used for the exterior wave field while a boundary element method was used for the interior wave field. A hydraulic experiment was also performed to verify the validity of the numerical analysis. The numerical results were compared with experimental data and results from existing formulae. They generally agreed in both reflection and transmission coefficients. The calculated pore pressures also showed a similar pattern with experimental data, even if they gave some significant differences in their values fur some cases. The main cause of such differences can be attributed to the strongly nonlinear wave field occurring on the frontal slope of the breakwater. The direct input of dynamic pressures(measured from hydraulic experiment) into the numerical method was suggested as a promising method to enhance the predictability of pore pressures.

Optimization-based calibration method for analysis of travel time in water distribution networks (상수관망 체류시간 분석을 위한 최적화 기반 검·보정 기법)

  • Yoo, Do Guen;Hong, Sungjin;Moon, Gihoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.429-429
    • /
    • 2021
  • 2019년 발생한 인천광역시 붉은 수돗물 사태로 급수구역에 포함된 26만 1천 세대, 63만 5천 명이 직·간접적인 피해를 입은 바 있다. 경제적 피해액으로 추정할 경우 최소 1,280억 원 이상으로 보고된 바 있으며, 이와 같은 상수관망의 수질사고 확산은 장기간 동안 시민의 건강과 생활환경 수준을 저하시킨다. 따라서 상수도시스템의 수질사고확산 모델링 및 방지기술을 통한 수질안전성의 재확인이 필요하며, 이것은 상수도시스템의 지속가능성을 높여 국민이 체감하는 물 환경 수준 제고에 기여가 가능하다. 관망 내 수질해석을 직접적으로 수행하는 모델은 국외적으로 다양하게 개발(PODDS, EPANET-MSX, EPANET2.2 등)된 바 있으나 검·보정을 위한 수질측정 자료 부족 등으로 적용이 제한적이라는 한계가 현재에도 존재한다. 이를 보완하기 위해 수질자료에 비해 그 양이 많고 획득방법이 상대적으로 수월한 수리학적 계측자료 및 해석결과를 활용한 관로 내 체류시간 등을 활용한 연구가 수행된 바 있다. 그러나 이와 같은 수리학적 해석 결과를 활용하는 경우에도 계측자료를 기반으로 한 수리학적 검·보정은 필수적이라 할 수 있다. 본 연구에서는 관로 내 체류시간에 직접적인 영향을 미치는 유량 및 유속자료를 중심으로 수리학적 관망해석의 결과를 최적 검·보정하는 방법론을 제안하였다. 기존 상수관망 수리해석의 검·보정은 일부 지점에서 수압을 측정하고, 수리해석 결과로 도출되는 해당 지점의 수압이 실측된 결과와 유사하도록 관로의 유속계수를 적절히 보정하는 형태로 진행되었다. 그러나 본 연구에서는 관로유량과 유속자료의 목적함수 내 가중치를 수압자료보다 크게 설정하여 체류시간 중심의 검·보정이 수행될 수 있도록 하였으며, 검·보정 대상인자 역시 대수용가의 수요량, 수요패턴, 그리고 관로유속계수로 확장된 모형을 구축하였다. 최적화 기법으로는 메타휴리스틱 기법중 하나인 화음탐색법을 활용하였다. EPANET 2.2 Toolkit과 Visual Basic .Net을 연계하여 프로그래밍하였으며, 개발된 모형을 실제 지방상수도 시스템에 적용하여 분석하였다.

  • PDF

Determination of Horizontal Coefficient of Consolidation from the Self-boring Pressuremeter Holding Test by Considering Pore Pressure Dissipation Trend (간극수압 소산경향을 고려한 자가굴착식 프레셔메터로부터의 수평압밀계수 결정법)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.151-159
    • /
    • 2004
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation of clayey soil by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up of excess pore pressures as a function of the rigidity index and subsequent dissipation of excess pore pressures around a pressuremeter Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves over 50% degree of dissipation range using optimization technique. The effectiveness of the proposed back-analysis method was examined against the real fled performances obtained from pressuremeter strain holding tests at Gimje and Yangsan site. It is shown that the proposed back-analysis method can evaluates the rational horizontal coefficient of consolidation, which is similar to those obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

Application of Optimum Design Technique in Determining the Coefficient of Consolidation Using Piezocone Test (피에조 콘 시험을 이용정회원, 한국과학기술원 토목공학과 부교수, 정회원, 한국과학기술원 토목공학과 박사 후 과정한 망일계수 결정시 최적화 기법의 적용)

  • Kim, Yeong-Sang;Lee, Seung-Rae;Kim, Yun-Tae
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.95-108
    • /
    • 1997
  • For normally consolidated clay, several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation However, depending on the assumptions and analytical techniques, it could considerably vary even for a specific degree of consolidation. In this paper, a method is proposed to determine a consistent coefficient of consolidation over all ranges of degree of consolidation by applying the concept of the Optimum Design Technique. The initial excess pore pressure distribution is assumed to be obtainable by the successive spherical cavity expansion theory. The dissipation of pore pressure is simulated by means of two dimensional linear-uncoupled axisymmetric consolidation analysis. The minimization of the differences between the measured and the predicted excess pore pressures was carried by BFGS unconstrained optimum design algorithm with one dimensional golden section search technique. By analyzing numerical and real field examples, it can be found that the adopted optimum technique gives a consistent and convergent results.

  • PDF

Study on Characteristics of In-situ Rock Stress State in Mountainous Region by Hydraulic Fracturing Method (수압파쇄시험에 의한 산악지역에서의 현지 암반 초기응력 측정 및 분포특성 연구)

  • Bae, Seong-ho;Jeon, Seok-won;Choi, yong-kun;Kim, Hak-soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2002
  • Since early in the 90's, the need for construction of underground rock structures such as long and large section traffic tunnel, energy storage cavern, industrial facility, etc. has been largely increased because the Korean territory is not wide and about 65 % of the land consists of mountainous region. The initial rock stress measurement has been widely conducted to provide the quantitative information on the stress state of engineering site at the design stage of underground rock structures. Among the diverse methods developed for measuring rock stress, hydraulic fracturing test is most popularly used because it is applicable at pre-construction stage and has no limit in testing depth. In this paper, the characteristics of initial rock stress state in mountainous region were studied on the basis of the in-situ hydraulic fracturing stress measurement results from the 60 test boreholes in various parts of Korea.

  • PDF

A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model (비정수압 수치모형을 이용한 다공성 구조물의 유동에 관한 수치적 연구)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-122
    • /
    • 2018
  • This paper introduces a non-hydrostatic wave model SWASH for simulating wave interactions with porous structures. This model calculates the flow in porous media based on volume-averaged Reynolds-averaged Navier-Stokes equations (VARANS) in ${\sigma}$-coordinate. The empirical coefficients of resistance used to account for the flow in a porous media often need to be measured or calibrated. In this study, the empirical resistance coefficients used in the model are calibrated and validated using laboratory experiments, involving dam-break flow through porous media, and solitary wave interactions with a porous structure. It is shown that the agreement between experimental and numerical results is generally satisfactory. It is also confirmed that non-hydrodynamic model, SWASH, is computationally much more efficient than the three-dimensional porous flow models based on VOF approach.